Appendix A

Waln Creek Enhancement and Battle Creek Culvert Removal Project Mitigation Plan

Salem Umbrella Mitigation Bank Instrument

Bank Sponsor: City of Salem Public Works Department 1410 20th Street SE Salem OR 97302-1200

Prepared By: Pacific Habitat Services, Inc. 9450 SW Commerce Circle, Suite 180 Wilsonville, OR 97070

May 8, 2014

TABLE OF CONTENTS

I.	INTRODUCTION1
II.	SITE INFORMATION 1
III.	PROJECT NEED
IV.	PERMITS2
V.	COMPENSATORY STREAM MITIGATION PLAN
VI.	PROPOSED PERFORMANCE STANDARDS 8
VII.	SITE-SPECIFIC MONITORING PLAN9
VIII.	MAINTENANCE PLAN9
IX.	CREDIT DETERMINATION AND CREDIT RELEASE SCHEDULE
X.	LONG-TERM MANAGEMENT PLAN11
XI.	SERVICE AREA11

ATTACHMENTS

A. FIGURES FROM JOINT PERMIT APPLICATION

1	USGS Map
2	Tax lot map
3	Aerial photo of site
4	Existing conditions
5	Proposed grading and site plan (overview)
5A/B	Proposed grading and site plan (detail)
5C	Cross-sections of proposed streambank benching
6	Elevation view of the new collector street bridge crossing of Waln Creek
7	Streambank treatments for Waln Creek
7A	Cross-sections of streambank treatment A
7B	Cross-section of streambank treatment B
7C	Typical cross-section of streambed for Waln Creek
8	Proposed riparian planting plan
8A	Proposed plant list and planting grid
8B	Proposed riparian shrub plant distribution and planting notes
9	Culvert removal areas and streambank treatments on Battle Creek
9A/B	Cross-sections and profiles of culvert removal on Battle Creek

- 10 Alternative thalweg locations for Waln Creek
- 11 Proposed erosion control plan
- 12 Proposed stormwater plan

B. DRAINAGE EASEMENT KELLY – RENFRO PROPERTY

- C. LAND USE AFFADAVIT
- **D. ADJACENT PROPERTY OWNERS**
- E. GEOMORPHIC ANALYSIS MEMORANDUM
- F. DSL WETLAND DELINEATION APPROVALS
- G. STREAM MITIGATION PROCESS WORKSHEETS
- H. SERVICE AREA

Appendix A

Waln Creek Enhancement and Battle Creek Culvert Removal Project Mitigation Plan

Salem Umbrella Mitigation Bank Instrument

I. Introduction

This project is located on the former Battle Creek Golf Course; a once privately-owned course in south Salem that opened in 1962 and closed in 2007. The approximately 83-acre property is surrounded by single and multi-family housing and is characterized by open fields (former fairways), a number of mature trees, several wetlands, and four creeks. The largest creek is Battle Creek, which flows west to east through the site. Tributaries to Battle Creek include Powell Creek, Scotch Creek, and Waln Creek; all of which converge near the center of the property. Battle Creek flows offsite under Fairway Avenue, Commercial Street, and Interstate 5 before flowing into Mill Creek, near the City of Turner.

In 2008, the City of Salem purchased 38.52 acres in the southern portion of the golf course. The purpose of the purchase was to create a multi-purpose open space, with improved seasonal flood storage, enhanced creeks and riparian areas, and passive recreation opportunities. The acquisition was funded with utility rate funds as part of the City's stormwater management system. In October 2010, the City acquired an additional 29.4 acres of the golf course north of the previously purchased area. Of this new area, 10.6 acres was subsequently sold to the Salem-Keizer School District for the construction of an elementary school, which opened in September 2012.

The Waln Creek Enhancement and Battle Creek Culvert Removal Project is Phase 1 of two inter-related projects that will be constructed on the site of the former Battle Creek Golf Course. This project includes benching the banks of Waln Creek, creating a new, sinuous stream channel for a portion of Waln Creek, grading to create new floodplain, incorporating large woody material into the stream banks, and replanting the riparian area with native trees and shrubs. The removal of two culverts on Battle Creek, at the upstream and downstream ends of the former golf course, is also included in the Phase 1 project. The Phase 2 project, which is not part of this mitigation proposal, is the enhancement of Battle Creek to include benching portions of the banks, grading to create new floodplain, and replanting the riparian area with native trees and shrubs. Both phases will contribute to meeting City floodplain and stormwater management requirements. The Waln Creek enhancements and culvert removal on Battle Creek, which is the subject of this document, are described in more detail below. The Phase 2 enhancements on Battle Creek will be considered separately in the future.

II. Site Information

- a. <u>Site Location Map</u>: Figure 1
- b. <u>Latitude and Longitude</u>: 44.86398; -123.02364,
- c. Legal Description: T 8S, R 3W, Sec. 23B, Tax Lots 100, 200, 400. (Figure 2)
- d. <u>Aerial Photo</u>: Figure 3

e. <u>Site Ownership</u>: The City of Salem is the legal landowner of the property south of the new collector road bridge (Tax Lot 200, 400).

The portion of the Waln Creek project area north of the bridge is on property owned by Terry Kelly and Mary Renfro (Tax Lot 100). The City holds a restrictive drainage easement on the project area, which prohibits any development or other disturbance to the creek and riparian area (see Attachment B). Restoration activities on the Kelly-Renfro Property are not included in the mitigation bank credit calculations.

- f. Land Use Affidavit: Attachment C
- g. Adjacent Landowners: Attachment D

III. Project Need

Upon closure of the Battle Creek Golf Course, initial plans proposed redevelopment of the entire area to residential and commercial land uses. The rezoning, however, concerned adjacent property owners, who primarily were worried that any new development would exacerbate the property's periodic flooding and increase traffic on neighborhood streets. Through negotiations with the property owners, the City acquired the southern portion of the property (38.52 acres) to address flooding concerns. Subsequently, a rezone of their remaining property from PA (Public Amusement) to RS (Residential Single Family), RM-1 (Residential Multi-Family), and CR (Commercial Retail) was filed. Responding to citizen concerns, the Salem City Council adopted on July 13, 2009, Conditions of Approval (COA) (Order No. 2009-05-CPC/NPC/ZC) that included the following:

- a. The construction of a new collector street to serve future site development.
- b. Future development of the property is subject to a —zero net rise restriction, which requires compensatory flood storage to be provided for any fill placed below the 100-year flood elevation.
- c. Waln Creek shall be improved by allaying the banks and creating sinuosity.
- d. Required implementation of projects that are in the City's Stormwater Master Plan, including the removal of culverts and stream enhancements.

After purchasing the additional area (29.4 acres) north of Battle Creek in 2010, the City, as a landowner, became subject to the COA adopted by the City Council. The Waln Creek enhancement project will address the flooding concerns of adjacent property owners by creating additional floodplain area and reconnecting the stream with a functional floodplain. The project will also meet all of the COAs described above, for which the City is responsible.

There are no federal or state permit requirements, other than for the permitted work, or mitigation credits associated with the project.

IV. Permits

The following permits have been issued for the project:

- a. Corps No.: NWP-2011-100; issued March 16, 2012
- b. DSL Permit No. 47781-RF; issued November 3, 2011

V. Compensatory Stream Mitigation Plan (CSM)

a. <u>Baseline Conditions for the CSM Site</u>:

i. <u>Summary of Physical and Biological Characteristics of the Mitigation Site</u>: The project site contains four perennial creeks. Battle Creek is the principal creek within the property and flows from west to east across the approximate center of the project site. The other creeks are Waln Creek, which flows from the northern property boundary south, Powell Creek, which is located to the south of Battle Creek and flows from west to east, and Scotch Creek, which is also south of Battle Creek and which flows south to north. All three creeks flow into Battle Creek almost at the same location.

The property encompasses a portion of a former golf course that opened in 1962 and closed in 2007. As is typical of a golf course, through the years the property's site drainage and vegetation were managed to facilitate the game of golf. Alterations include the excavation of several shallow ponds along Powell Creek and the straightening of all of the creeks, especially Waln Creek, which is essentially a ditch. The historic course of Waln Creek may be reflected in a shallow, linear wetland (Wetland F) located farther to the east of the existing channel. This wetland was one of seven wetlands delineated in 2007 and concurred with on June 24, 2008, by the Department of State Lands.

Little maintenance occurred on the golf course since it closed in 2007. This lack of maintenance may have resulted in additional wetlands forming in a portion of the property. On January 31 and February 15, 2011, wetland scientists from PHS conducted an on-site review of the wetland delineation boundaries within the project site. They found a larger area of wetland to the south of the Powell Creek channel and to the west of its confluence with Waln and Scotch Creeks. The modified wetland is 2.61 acres, approximately 2.00 acres larger than the previously concurred boundary. This brings the total area of wetlands within the study area to 3.55 acres.

Detailed Waln Creek conditions are contained in Attachment E: Geomorphic Reconnaissance for Waln Creek, which includes photographs of pre-existing conditions.

- ii. <u>Approximate Location of Water Features (e.g., wetlands, streams, lakes)</u>: Figure 4
- iii. <u>Jurisdictional Determination/Delineation Report</u>: DSL concurrence letter WD #08-0034 (2008) and WD #2008-0034 Addendum (2001) is provided as Attachment F
- iv. <u>Description of the Major Plant Communities</u>: Golf course fairways are dominated by mowed, non-native grasses. The creek banks are generally lacking woody riparian vegetation, though Douglas spiraea is found below the top of bank along portions of Waln Creek. All of the wetlands are palustrine emergent (Slope and Flats) and are dominated by non- native grasses (e.g. reed canarygrass, meadow foxtail) and soft rush.
- v. <u>CSM Site Constraints or Limitations</u>: There are no known site constraints or any liens or easements that might conflict with bank objectives. Any impacts to the mitigation bank that might result from any future infrastructure improvements that might occur will be restored to pre-impact conditions.

vi. <u>Functional Assessment</u>: The project will improve flood storage, water quality, aquatic and riparian habitat, and conveyance functions, all of which have been impacted in streams throughout much of the watershed.

The project includes the realignment of Waln Creek into a new sinuous channel with more gently sloped banks and the creation of floodplain adjacent to Waln Creek. This will result in improved connectivity of the stream to its floodplain and provide for improved flood attenuation capability. All of this will reduce the risk of periodic flooding of adjacent properties, which occurred prior to project construction.

The project includes replanting the riparian corridor with native trees and shrubs for a distance of 50 feet on either side of Waln Creek. As this woody vegetation matures, it will provide increased shade to the stream channel, which will contribute to lower water temperatures and improved water quality. Construction of the new stream channel also includes the placement of streambed gravel on the new channel bottom. The replacement of fine-grained substrates with coarser gravels will reduce scour, and this reduced scour will also contribute to improved water quality within the watershed.

Prior to project construction, substrate in the Waln Creek channel consisted primarily of hardpan clay and silt. The replacement of these substrates with gravel will improve habitat for aquatic macroinvertebrates, which provide food for fish and other organisms. Cutthroat trout are known to occur within the project area in Battle Creek, and they likely move from Battle Creek into Waln Creek as flows allow. The gravel substrates in the new Waln Creek channel will also provide improved spawning habitat for cutthroats and other fish species. Large woody material, which is incorporated into the banks of the new stream channel, will also provide habitat for aquatic macroinvertebrates, and it will also provide shelter for fish during periods of high flows. As noted above, native trees and shrubs in the riparian area will contribute to reduced stream temperatures, which will improve aquatic habitat for native species. This revegetated riparian corridor will also provide habitat for the aquatic food web.

Removal of the culverts in Battle Creek at the upstream and downstream ends of the project site will remove fish passage barriers and provide improved connectivity along the stream corridor, allowing fish to move along longer reaches of streams within the watershed. The removal of these culverts will also improve conveyance along the stream and within the watershed.

- b. <u>Goals and Objectives of the CSM</u>: Goals of the Waln Creek Enhancement and Battle Creek Culvert Removal Project are as follows:
 - Restore floodplain function.
 - Improve Waln Creek channel and habitat conditions.
 - Improve conveyance within Battle Creek.

These goals were accomplished through implementation of the following objectives:

- Approximately 800 feet downstream of the northern property boundary, a new sinuous creek channel was excavated to the east of the existing creek. The new channel has a bottom width of approximately 8 feet and 2:1 side slopes. The bed of the new creek was lined with coir material for erosion control, with native gravels placed in the bottom of the channel.
- A compacted soil plug with a volume of 450 cubic yards and a length of 200 feet was placed in the existing channel to divert flows into the realigned channel. Approximately 300 feet of the existing channel downstream of the soil plug was left intact as backwater refugia from Battle Creek.
- Floodplain benching occured along the length of Waln Creek. From the northern property boundary south approximately 950 feet, the bench is fifty-feet wide. Starting at the upstream end of the compacted soil plug, the benching become increasingly wider and will eventually include benching along Battle Creek. The total benched area will cover 5.69 acres.
- This entire area was seeded with native herbaceous cover, and the first fifty feet either side of Waln Creek (including the new sinuous portion of the channel) was planted with native trees and shrubs. The total area planted with trees and shrubs is 3.28 acres.
- Two culverts were removed on Battle Creek near the western and eastern property boundaries. During large storm events, water flowed over both culverts. To improve conveyance within the creek, both culverts were removed and the channel bottom and banks regraded to match the surrounding elevations. The western culvert had a diameter of 36 inches and was approximately 121 feet long. The eastern culvert also had a diameter of 36 inches and was approximately 102 feet long. Removal of the submerged culvert at the eastern property line improved fish passage during low flows. Once the culverts were removed and the creek regraded, the new surfaces were seeded with a native seed mix and planted with native trees and shrubs.
- c. <u>Site Selection Information</u>: Summary of the project selection criteria from Appendix B. The project meets the site section criteria from Appendix B of the MBI as follows:

Connectivity of Aquatic Resources Criteria

- Where primarily in-channel mitigation is proposed, associated floodplain and associated riparian corridor is unconstrained and fully functioning, or mitigation includes restoration of floodplain and riparian corridor. The project restores floodplain and riparian corridor along Waln Creek.
- Site is fully hydrologically connected with its floodplain (where floodplain exists depending on stream type) or floodplain restoration of floodplain connectivity is included in proposed actions. The project reconnects Waln Creek to its floodplain within the project site.

• Access to site by aquatic organisms (not limited to fish) is not limited by downstream manmade passage barriers or includes passage remedy, if appropriate to the functions being replaced/restored. Removal of the culvert at the downstream end of the former Battle Creek Golf Course will remove a fish passage barrier downstream of the project site; however other barriers to passage are present downstream of this culvert.

Function Specificity Criteria

- Site provides opportunity to improve functions identified as priorities for restoration in the sub-basin, or functions that are most likely to influence and enhance other functions, as indicated by their influence rank. The project will improve flood storage, water quality and habitat functions. Grading to create new floodplain will reconnect Waln Creek to its floodplain and alleviate flooding problems that existed at the site prior to project construction. The re-establishment of native trees and shrubs within 50 feet of the stream will increase shade, which will help to lower stream temperatures, which are a pollutant of concern throughout Salem's streams. Replacing the straightened channel with a sinuous channel and replacing the existing hardpan and silty substrate with coarser materials will improve habitat for fish and aquatic invertebrates.
- *Site provides opportunity to improve multiple functions identified as limiting or constrained in a watershed context.* The project improves water quality and flood attenuation functions within the watershed.
- *Site provides opportunity to fully mitigate loss of full extent of each specific function at impact site.* With the construction of the future Phase 2 improvements on Battle Creek, the project improves flood attenuation and water quality functions for the Waln Creek and Battle Creek reaches throughout the site.
- Site provides opportunity to remove environmental constraints (e.g., armored banks, levees, impoundments, diversions, grade control, infrastructure, adjacent deleterious land use practices, etc.) or to improve stream functions identified as limited or constrained at the site. The project removes two culverts on Battle Creek at the upstream and downstream limits of the former Battle Creek Golf Course. The project also replaces the non-native, herbaceous-dominated riparian plant communities with native trees and shrubs, which will help to lower stream temperatures and improve the water quality function of the stream.

Durability Criteria

- Site provides for enduring and sustainable benefits through existing or new protections such as easements or public ownership. The project site has been purchased by the City to ensure its protection into the future.
- Site represents a high probability of success in meeting mitigation objectives relative to other site options for same objectives. Prior to construction of the project, adjacent properties experienced periodic flooding when Waln Creek overtopped its banks. Creation of the new floodplain adjacent to Waln Creek was designed to reduce this periodic flooding. There are no other site options for creating additional floodplain to reduce flooding on properties adjacent to the project site.

- d. <u>Site Protection Instrument</u>: The City will own or control through legal agreements all SMB Project sites in perpetuity and will serve as the long-term steward of the SMB Project sites, ensuring long-term maintenance of each SMB project through a City-approved management plan or integrated natural resource plan, as described in Section III.D. of the Umbrella MBI.
- e. Mitigation Work Plan:
 - i. <u>Design Criteria, Specifications and Alternatives Analysis</u>: Design criteria, specifications and a discussion of alternative designs are contained in Otak's Geomorphic Analysis Memorandum, which is included as Attachment E
 - ii. <u>Construction Methods and Schedule</u>: Construction above the ordinary high water of the creeks started in January 2012. As weather conditions allowed, excavation above the ordinary high water for floodplain benching occurred in early spring 2012. Excavated material was stockpiled on site and covered until the summer and fall of 2012, when the berms along the east and south sides of the property were constructed.

The excavation of the new sinuous Waln Creek channel began June 1, 2012, which is the start of the in-water work period (the in-water work period for all of the creeks within the property is June 1 through October 15). The majority of the channel was constructed —in the dry with no connection to Waln Creek upstream and Battle Creek downstream. While still dry, the bed and banks of the channel were lined with coir fabric and native gravel material (0.67-feet deep) was placed in the bottom of the new channel

The downstream end of the new channel was first connected to Battle Creek and then the upstream end of the channel connected to Waln Creek. To ensure minimal erosion within the channel, the work area within Waln Creek was isolated from stream flow. The isolation extended upstream of the realignment to downstream of the soil plug placed within the creek.

Although anadromous fish are not present within the creek due to blockages downstream, cutthroat trout are present. As such, the creek was first isolated with block nets upstream and downstream of the work area. Fish present within the work area were removed using a backpack electroshocker and placed into Battle Creek. The block nets were left in place across the width of the creek upstream and downstream of check dams that were temporarily placed in the creek to ensure the work area is dry. A bypass pipe re-routed the creek flow downstream in Waln Creek. Coir mats were placed downstream of the bypass pipe to ensure there was no erosion.

All areas were hydroseeded upon the completion of grading with the seed mixes listed in Figure 8A. Tree and shrub planting occurred between December 2012 – January 2013.

- iii. <u>Site Plan(s)</u>: Waln Creek Improvements Figures 5, 5A-B; Battle Creek Culvert Removal Figures 9, 9A-B
- iv. Cross-Sections (existing and proposed contours): Figures 5C, 9A-B

- v. <u>Planting Plan</u>: Figures 8, 8A-B
- vi. <u>Schematic of Any Proposed In-stream Structures</u>: Figures 7, 7A-D

VI. Proposed Performance Standards

- a. <u>Performance Standards for Riparian Plantings</u>: Although there is variation with the proposed standards listed in Exhibit C of the MBI, the following performance standards, approved in Department of State Lands permit number 47781-RF, will apply to the project:
 - i. <u>Permanent Monitoring Locations</u>: Permanent plot locations must be established during the first annual monitoring in sufficient number and locations to be representative of the site. The permanent plot locations must be clearly identified on the ground.
 - ii. <u>Native Species Cover</u>: The cover of native species, as defined in the USDA Plants Database, in the herbaceous stratum is at least 60%.
 - iii. <u>Invasive Species Cover</u>: The cover of invasive species is no more than 10%. A plant species should automatically be labeled as invasive if it appears on the current Oregon Department of Agriculture noxious weed list, plus known problem species including *Phalaris arundinacea, Mentha pulegium, Holcus lanatus, Anthoxanthum odoratum,* and the last crop if it is non-native. Non-native plants should be labeled as such if they are listed as non-native on the USDA Plants Database. Beginning in Year 2 of monitoring, DSL will consider a non-native plant species invasive if it comprises more than 15% cover in 10% or more of the sample plots in any habitat class, and increases in cover or frequency from the previous monitoring period. Plants that meet this definition will be considered invasive for all successive years of monitoring. After the site has matured to the stage when desirable canopy species reach 50% cover, the cover of invasive understory species may increase but not exceed 30%.
 - iv. <u>Bare Substrate Cover</u>: Bare substrate represents no more than 20% cover.
 - v. <u>Woody Vegetation</u>: The density of woody vegetation is at least 1,600 live native plants (shrubs) and/or stems (trees) per acre or the cover of native woody vegetation on site is at least 50%. Native species volunteering on the site may be included, dead plants do not count, and the standard must be achieved for 2 years without irrigation.
 - vi. <u>Species Diversity</u>: By Year 3 and thereafter, there are at least 6 different native species. To qualify, a species must have at least 5% average cover in the habitat class, and occur in at least 10% of the plots sampled.
- b. <u>Performance Standards for Instream Improvements</u>: Additionally, the following measures will be used to evaluate stream channel conditions. These performance standards and the methods to measure them are based on performance standards and measurement methods described in *A Function-based Framework for Stream Assessment and Restoration Projects* (EPA 843-K-12-006, May 2012).
 - i. <u>Permanent Monitoring Locations</u>: Four permanent cross sections will be established on Waln Creek during the first monitoring year, as follows:

- One near the upstream end of the restoration, south of the newly constructed connector road (Waln Drive, SE);
- One near the downstream of the project reach, immediately upstream of Waln Creek's confluence with Battle Creek; and
- Two within the newly realigned, meandering portion of Waln Creek.

The permanent cross section locations will be clearly marked so they can be easily relocated in subsequent monitoring years.

- ii. <u>Lateral Stability and Bank Erosion/Migration</u>: Lateral stability and bank erosion/migration will be assessed through annual cross-sectional surveys done at permanently established cross section locations. Comparison of cross sections to those done in previous years shall indicate that bank erosion is not occurring at a rate that would result in lateral instability or excessive channel migration. Bank erosion at the cross section locations shall remain at <0.1 ft. /yr., as measured by the cross section surveys.
- iii. <u>Incision and Floodplain Connectivity</u>: The degree of incision and floodplain connectivity will be assessed through the annual cross-sectional surveys done at permanently established cross section locations. Comparison of cross sections to those done in previous years shall indicate that the streambed is not downcutting and that the stream remains connected to its floodplain at the 1.2-year recurrence interval, as designed. The bank height ratio (BHR), which is a direct measure of channel incision, will be calculated from the cross sections. The BHR shall remain between 1.0 and 1.2 to confirm that the channel is not incising and remains connected to the floodplain benches.

VII. Site-Specific Monitoring Plan

Monitoring will be conducted annually at permanently established monitoring locations to assess whether the mitigation is meeting the performance standards described above. Riparian performance standards will be assessed at permanently established monitoring plots, and instream performance standards will be assessed at permanently established cross section locations. These permanent monitoring plots and cross sections will be established during the first monitoring year. Riparian vegetation monitoring and crosssectional surveys will be performed annually for a minimum period of seven years, as described in Section IV.F. of the Umbrella MBI. The results of the monitoring effort will be included in the annual monitoring report, as described in Section III.F. of the Umbrella MBI.

VIII. Maintenance Plan

a. <u>Initial Maintenance</u>: Maintenance during the establishment period will be conducted on an asneeded basis to ensure permit compliance and achievement of site-specific performance criteria. In-water (habitat) structures will be maintained to ensure the function of the structure as designed. Riparian vegetation will be maintained to ensure establishment of the approved native plant communities and control noxious/invasive weeds. Because there is a constant seed source for invasive species from upstream areas, which is beyond the control of this project, it will be essential to establish a healthy native plant community early in the project. Typically, herbicide application will be used two to three times a year (summer, fall) combined with periodic mowing to control weedy species and reduce competition from grasses for woody species.

Herbicide use will comply with all applicable federal/state standards. Maintenance will also include irrigation, as necessary, during the establishment period, and protection against herbivore and other damage. Supplemental planting will be conducted as necessary to ensure compliance with performance standards.

- b. <u>Contingency and/or Adaptive Management Plans</u>: If it is determined modification of a structure or performance standard is necessary, a request will be submitted to the co-chair/permitting agencies for review and approval prior to implementing the modifications. Contingency actions will follow the guidelines listed in Part V.B. of the MBI, and be based on an evaluation of changes to site conditions that have affected the initial designs.
- c. <u>Long-term Maintenance</u>: The goal of long-term maintenance of city Natural Areas is to ensure the continued ecological functions and social values of the sites are maintained, as well as continued compliance with federal, state, and local regulations.

On-going maintenance of these and other city mitigation and areas is conducted by a dedicated city crew specialized in natural area maintenance. Long-term maintenance will follow the same basic approach as maintenance during the establishment period, with site treatments based on periodic inspections. Except as where otherwise provided, management activity will follow the best management practices listed in the City of Salem, Parks Operations, *Sensitive Study Management Practice Handbook*.

d. <u>Funding</u>: Initial/establishment maintenance costs are budgeted and provided for in the project construction budget. Long-term maintenance funding is budgeted annually based on projected activity and provided through utility rate funds as part of the City's stormwater management program.

IX. Credit Determination and Credit Release Schedule

Credits for the project will be quantified using the Salem Stream Mitigation Process Credit Calculation Worksheet. A total of 10,741 credits will be generated from the project, as summarized in Table 1. The Credit Calculation Worksheets used to quantify credits are included as Attachment G.

Mitigation Reach	Instream Credits	Riparian Credits	Total Credits	
Lower Waln Creek – Reach 1	6,567	1,151	7,718	
Middle Waln Creek - Reach 2	1,765	446	2,211	
Battle Creek - Reach 1	135	0	135	
Battle Creek - Reach 2	0	368	368	
Battle Creek - Reach 3	309	0	309	
Total:	8,776	1,965	10,741	

Table 1.	Summary of Credits for the Waln Creek Enhancement and Battle Creek Culve						
	Removal Project						

Credits will become available according to the following schedule:

- Upon approval of the "as-built" certification, up to 30 percent of the total expected can be released upon agency approval of the as-builts and completion of initial plantings.
- Upon achievement, and approval by the Corps and DSL, of performance standards in each of the first through seventh year monitoring reports 10 percent of credits (45 percent total) will be released.
- Upon approval of the long-term management plan 25 percent of credits will be released. This release may occur after approval of the third year monitoring report and credit release.

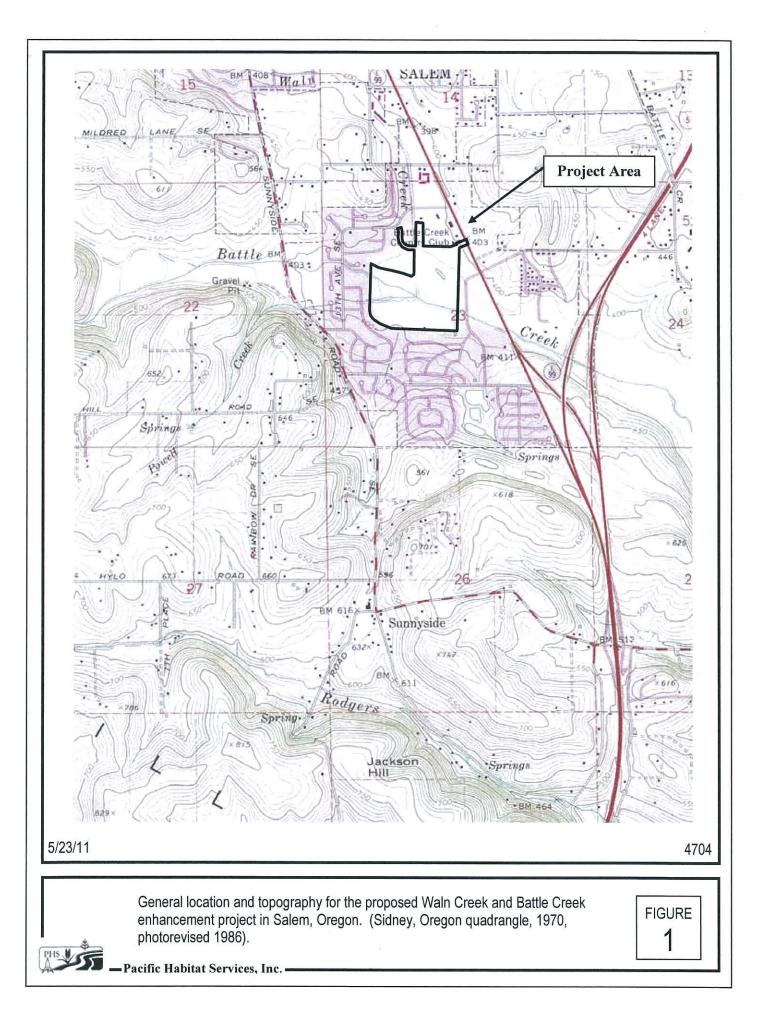
X. Long-Term Management Plan

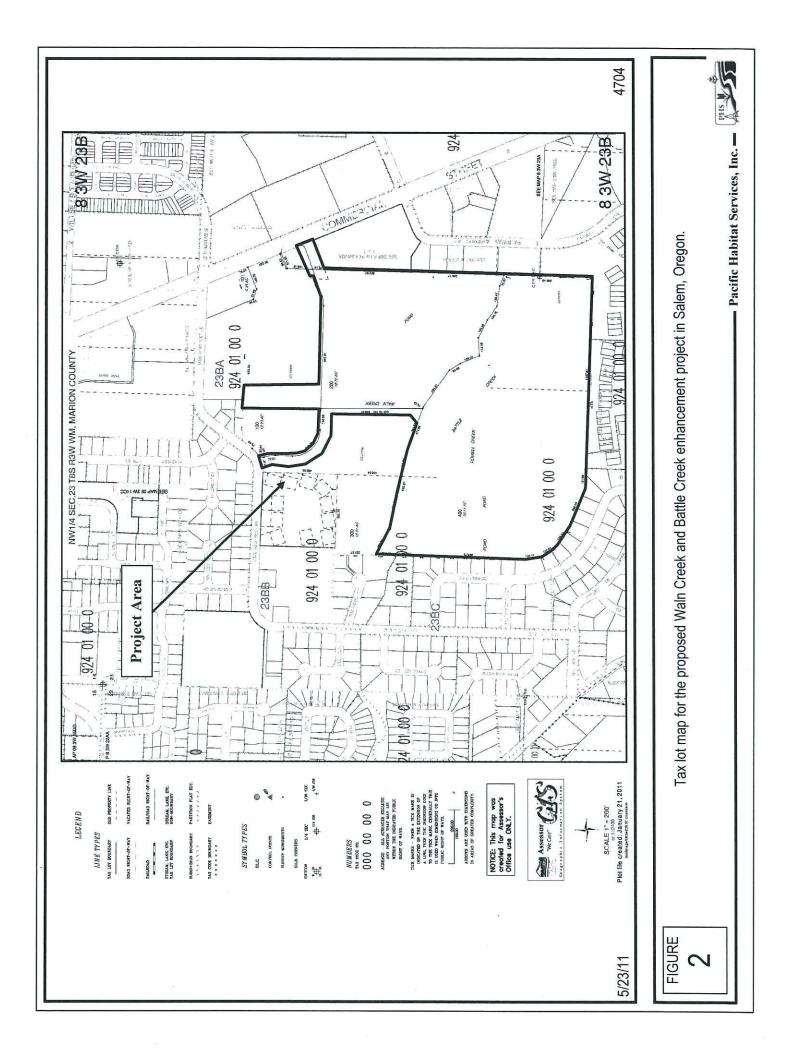
A Long-term Management Plan will be prepared in accordance with Section V of the Umbrella MBI. The Waln Creek Enhancement and Battle Creek Culvert Removal Project has been designed to be self-sustaining. Once monitoring confirms that performance standards and project objectives have been met, the City will manage the site as a "Conservation Area."

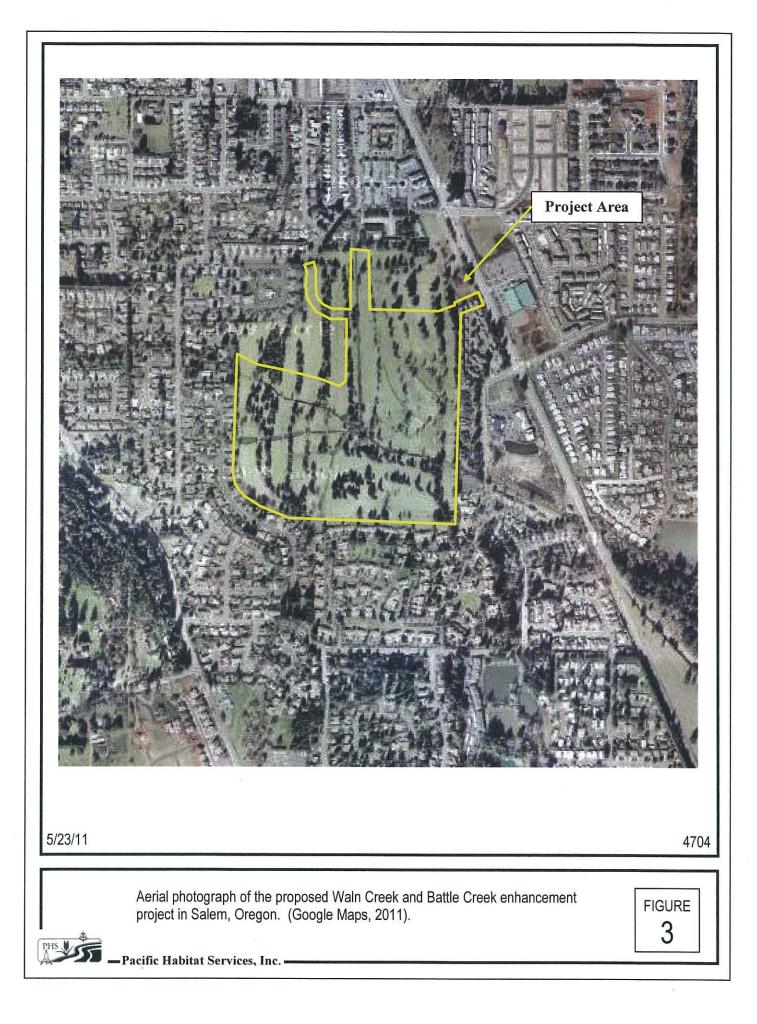
Prior to release of at least 25 percent of the mitigation credits, the City shall develop a Long-term Management Plan for the project site for review and approval by the co-chair agencies, in consultation with the IRT. The site management plan, which will be developed in accordance with the City's "Sensitive Areas Management Handbook", will be designed to be adaptive, addressing changing conditions on and surrounding the site. The Long-term Management Plan shall include the following five components:

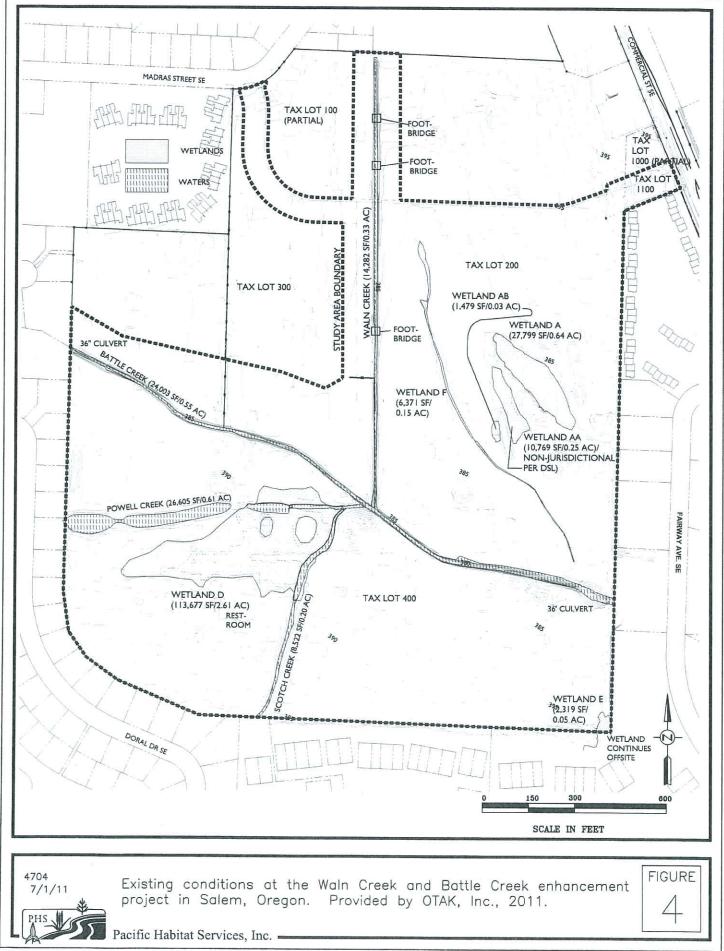
- 1. Identification of long-term management needs and annual cost estimates for these needs;
- 2. A long-term funding mechanism to meet these needs, such as a non-wasting endowment fund;
- 3. A site protection instrument such as transfer of title or a conservation easement conveyed to an appropriate long-term steward;
- 4. Identification of the party(s) responsible for ownership and all long-term management of the bank site, including a summary of the selected steward's capacity to implement the management plan; and
- 5. Procedures for future amendment of the Long-term Management Plan to allow for adaptive management, defining such situations in which review and approval of regulatory agencies would be necessary.

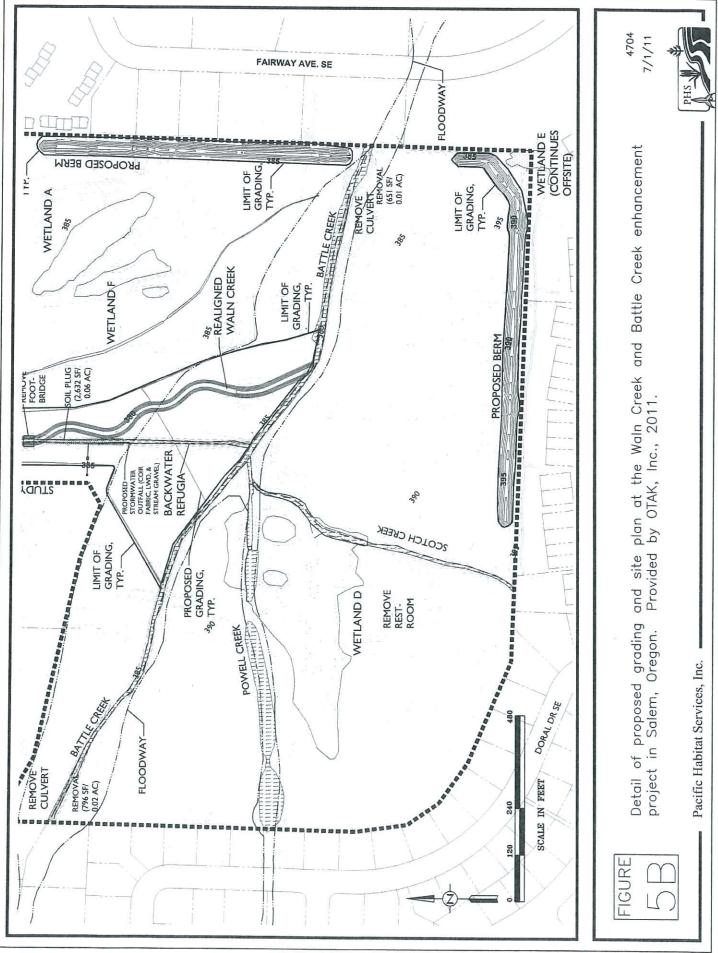
The City of Salem's Public Works Department will be responsible for maintaining the projects, consistent with the appropriate mitigation plan, to ensure its long-term viability as a functional aquatic resource. The mitigation site will be managed in coordination with existing and future adjacent restoration projects to achieve watershed goals. The City shall retain such responsibility unless and until the long-term project responsibility is formally transferred to an approved long-term steward; such a transfer would require pre-approval by the co-chair agencies.

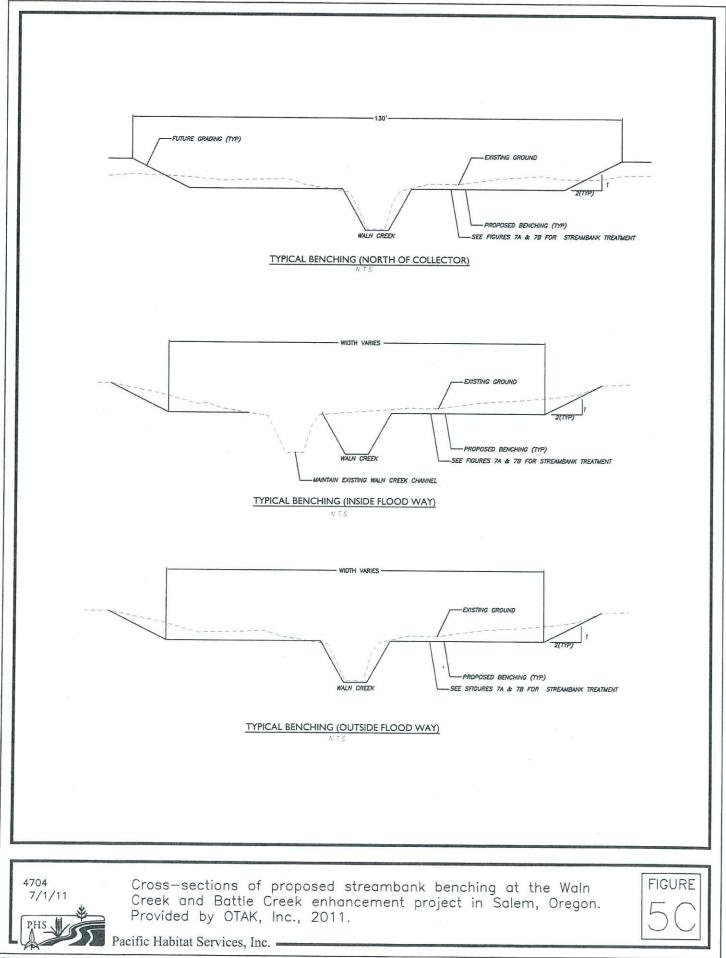

XI. Service Area

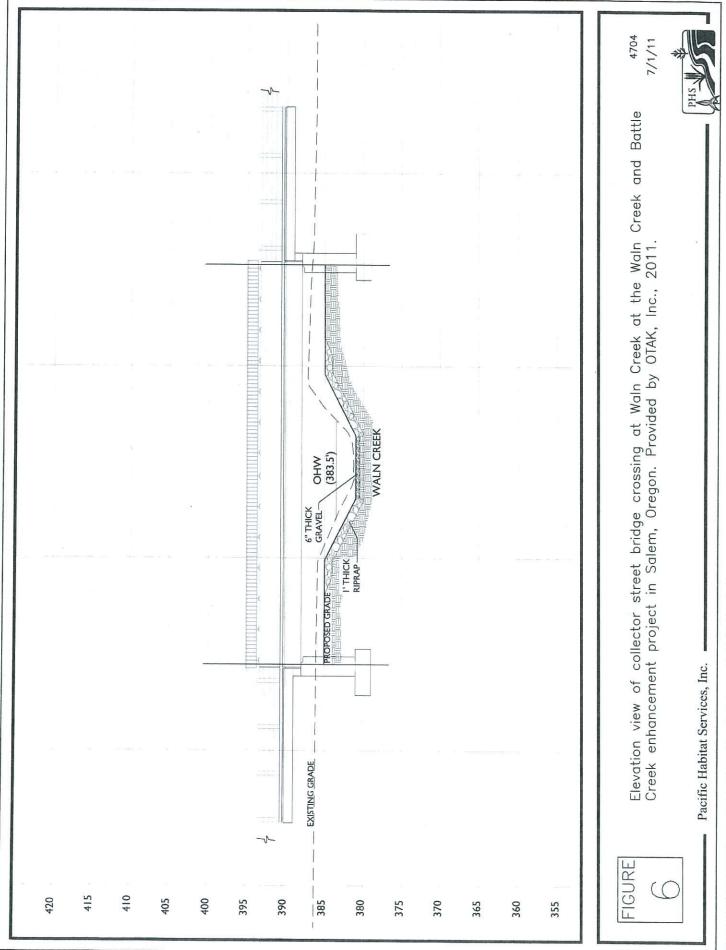

The Service Area for the Waln Creek Enhancement and Battle Creek Culvert Removal Project will be the 6th Field HUC within which the project is located – HUC 170900070203 (McKinney Creek). A map showing the service area is provided as Attachment H.

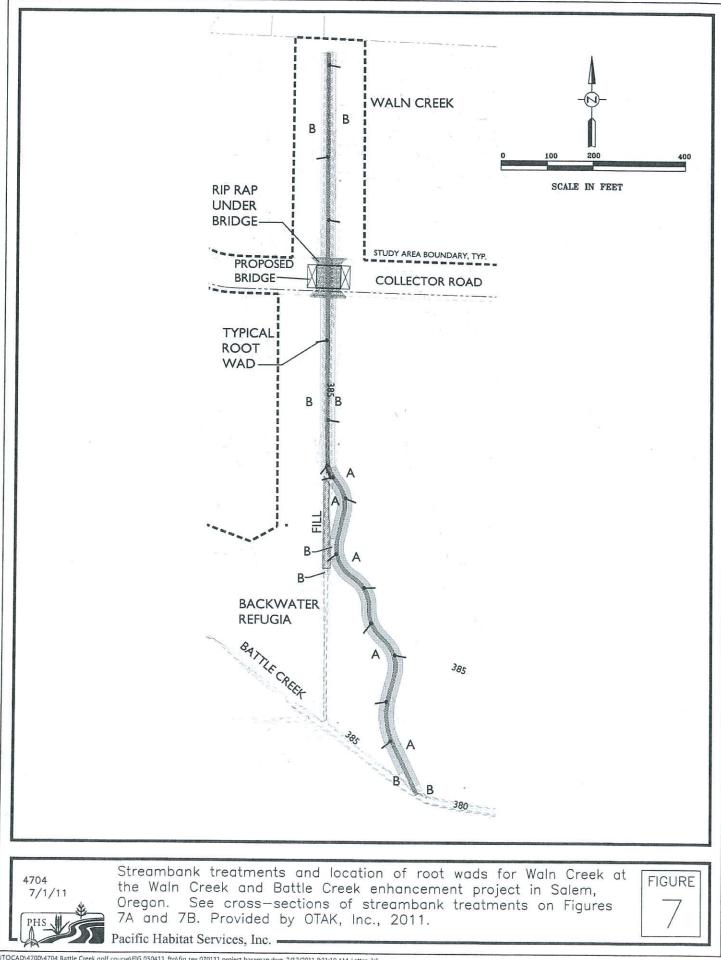

Attachment A

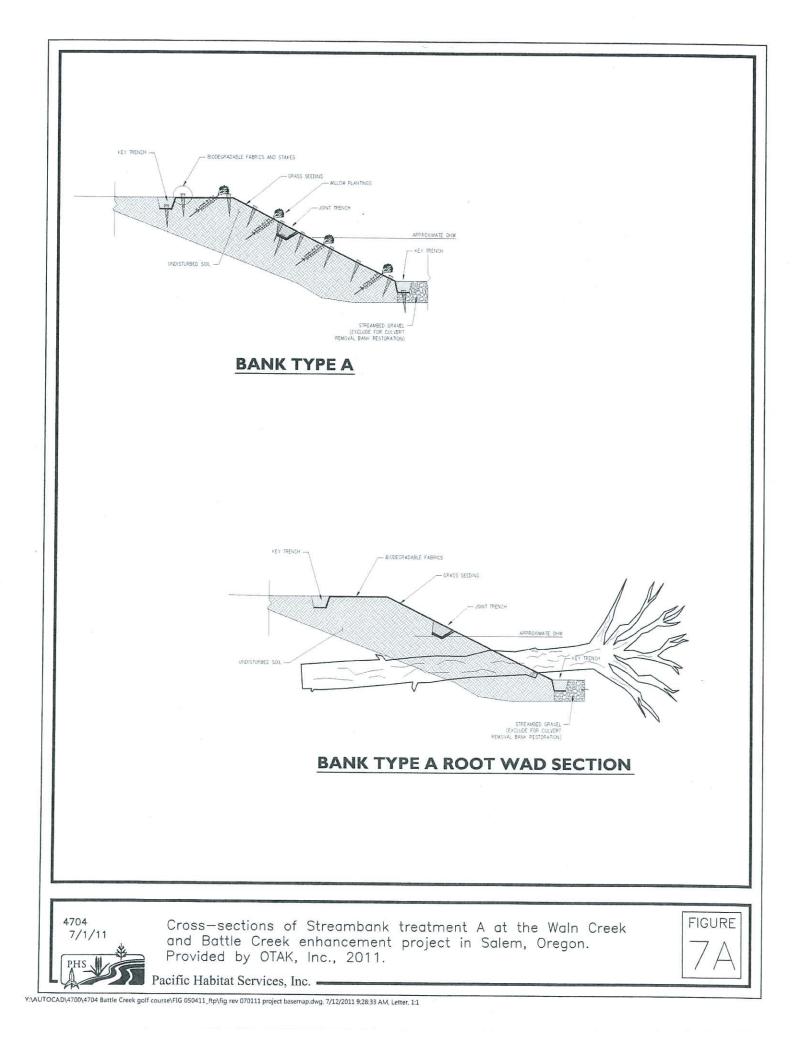

Figures from Joint Permit Application

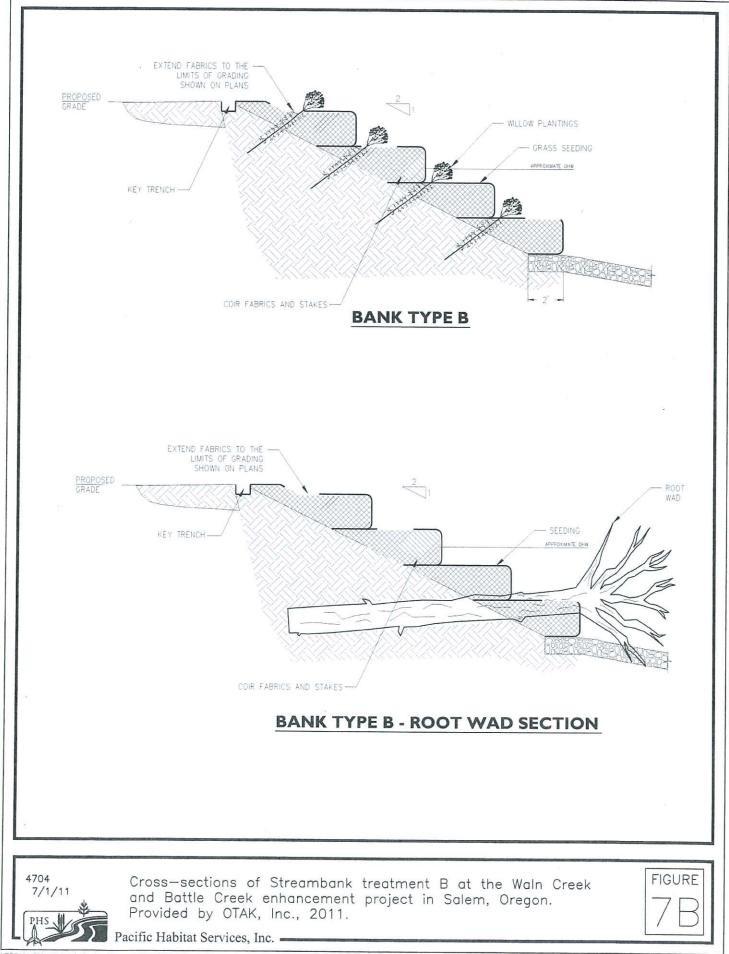

Y:\AUTOCAD\4700\4704 Battle Creek golf course\FIG 050411_ftp\fig rev 070111 project basemap.dwg. 7/12/2011 9:00:10 AM, Letter, 1:1


Y:\AUTOCAD\4700\4704 Battle Creek golf course\FIG 050411_ftp\fig rev 070111 project basemap.dwg, 7/12/2011 9:03:50 AM, Letter, 1:1

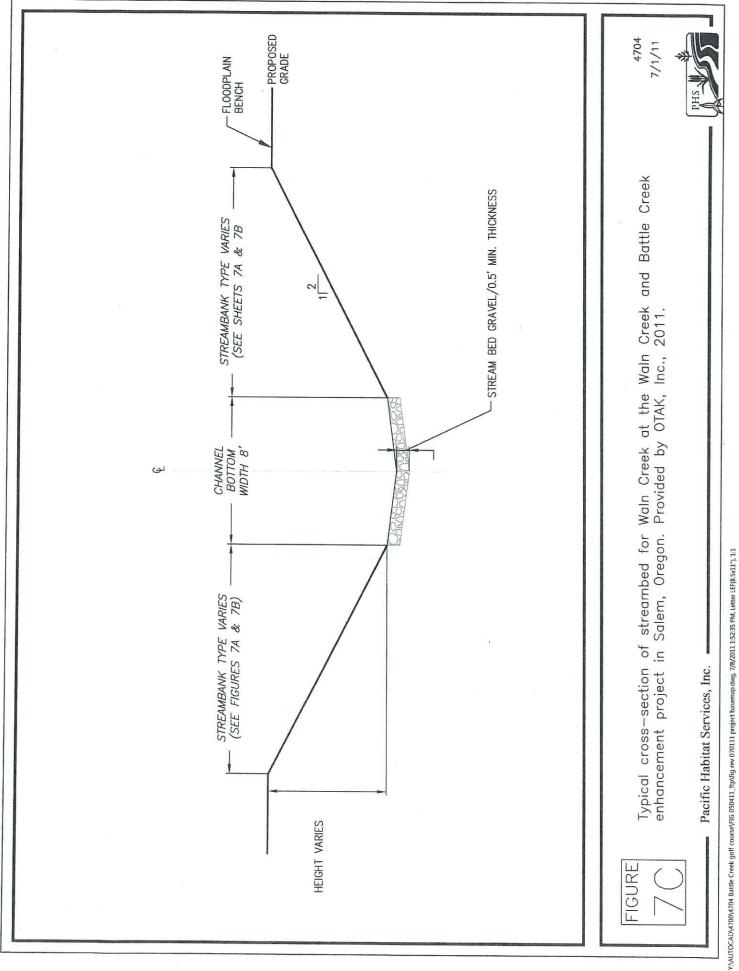

Y:\AUTOCAD\4700\4704 Battle Creek golf course\FIG 050411_ftp\fig rev 070111 project basemap.dwg. 7/12/2011 9:05:09 AM, Letter, 1:1

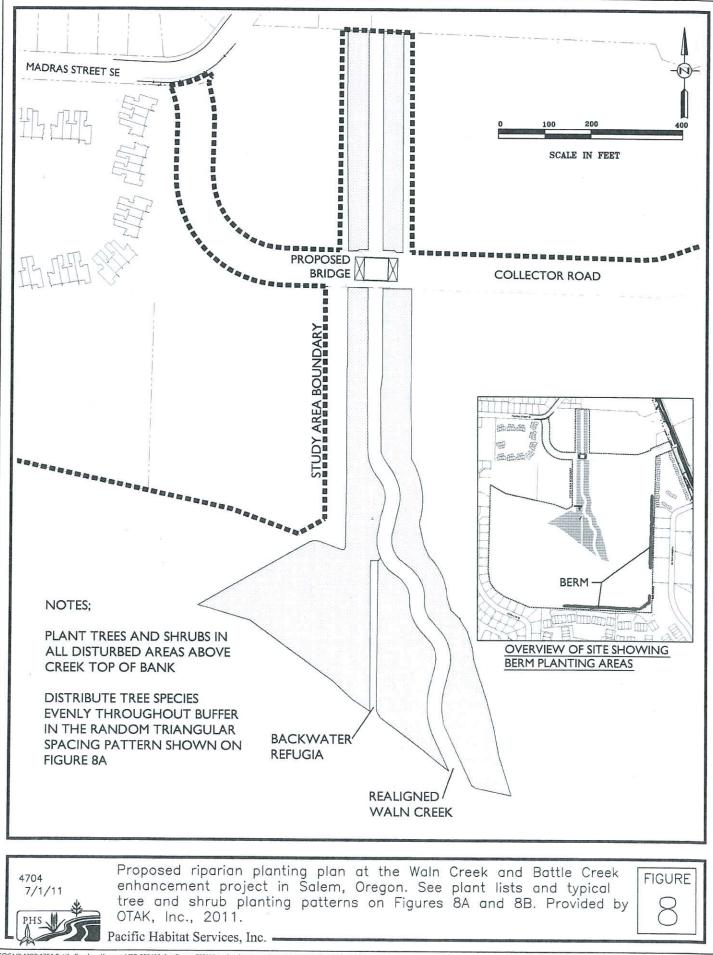

Y:\AUTOCAD\4700\4704 Battle Creek golf course\FIG 050411_ftp\fig rev 070111 project basemap.dwg.7/12/2011 9:06:06 AM, Letter, 1:1


Y:\AUTOCAD\4700\4704 Battle Creek golf course\FIG 050411_ftp\fig rev 070111 project basemap.dwg, 7/12/2011 9:20:44 AM, Letter, 1:1

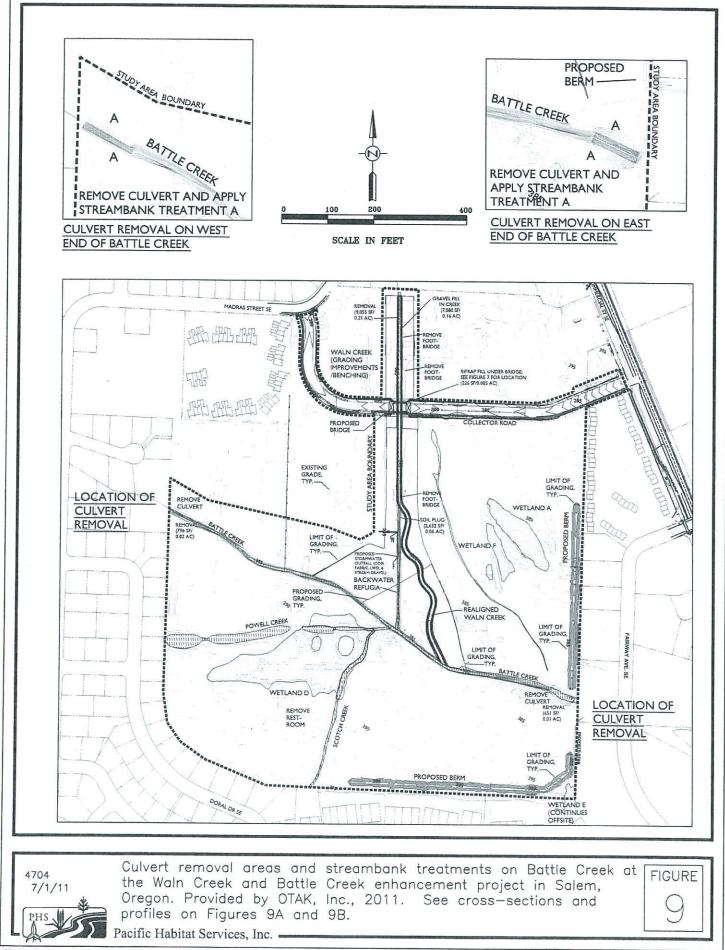


Y:\AUTOCAD\4700\4704 Battle Creek golf course\FIG 050411_ftp\fig rev 070111 project basemap.dwg, 7/12/2011 9:2256 AM, Letter, 1:1

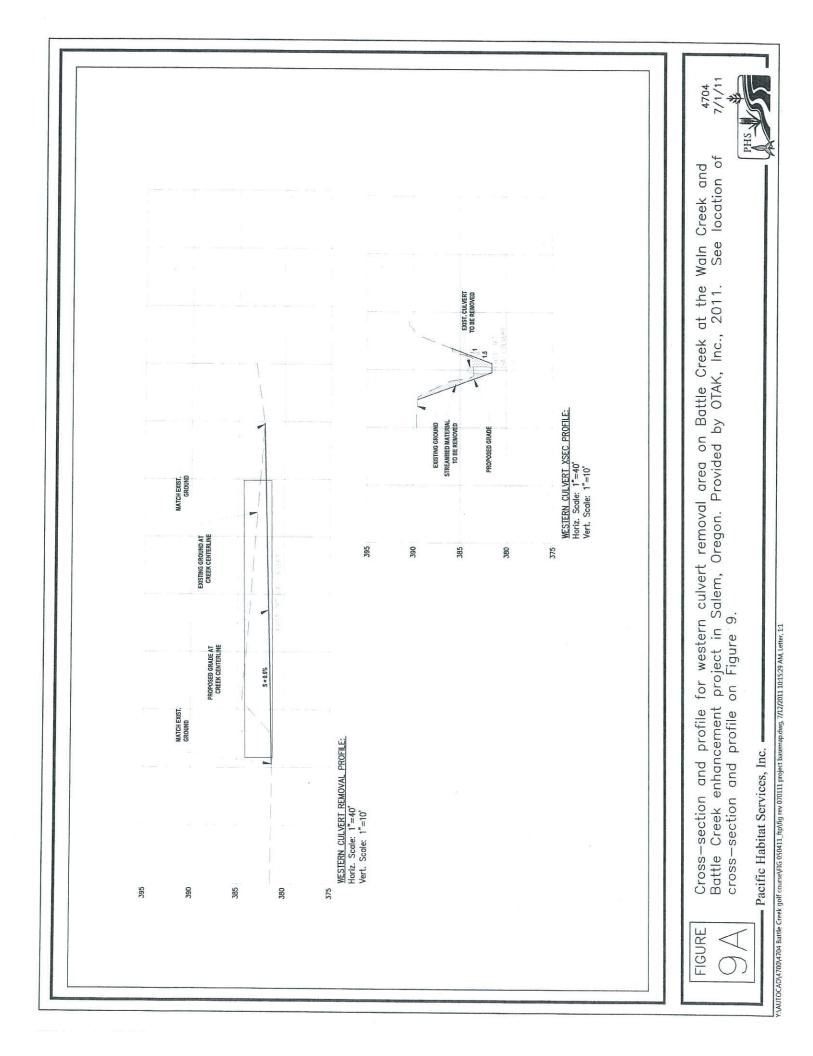


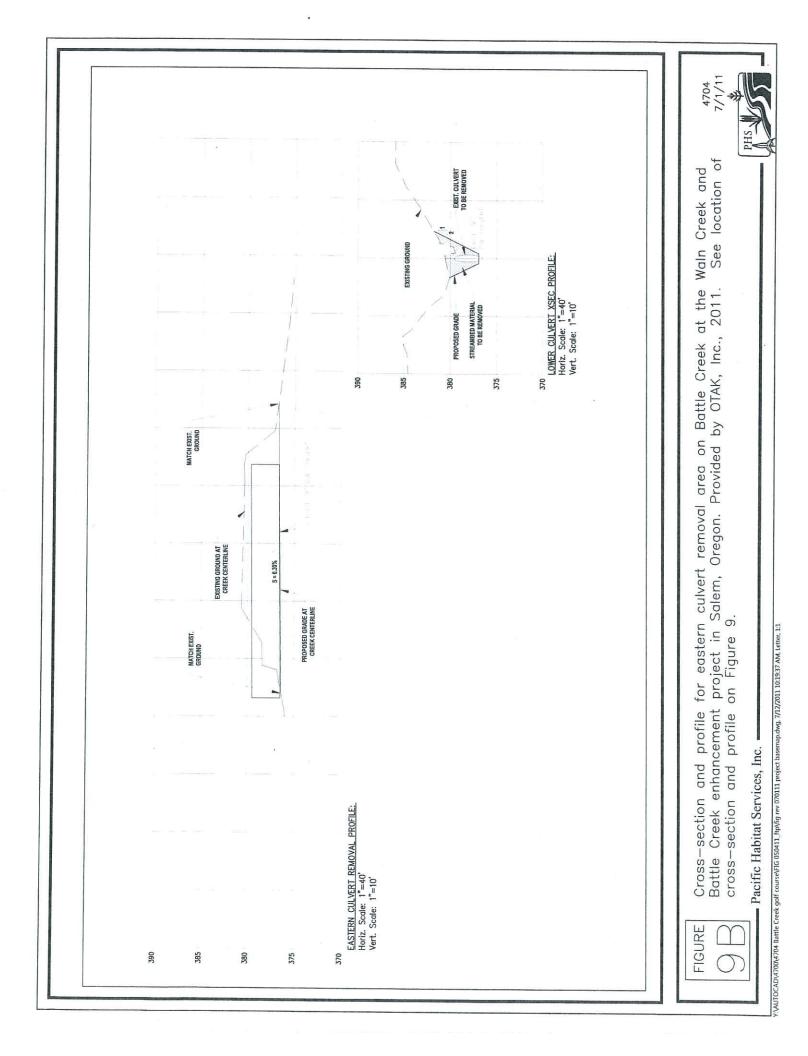

Y:\AUTOCAD\4700\4704 Battle Creek golf course\FIG 050411_ftp\fig rev 070111 project basemap.dwg, 7/12/2011 9:31:10 AM, Letter, 1:1

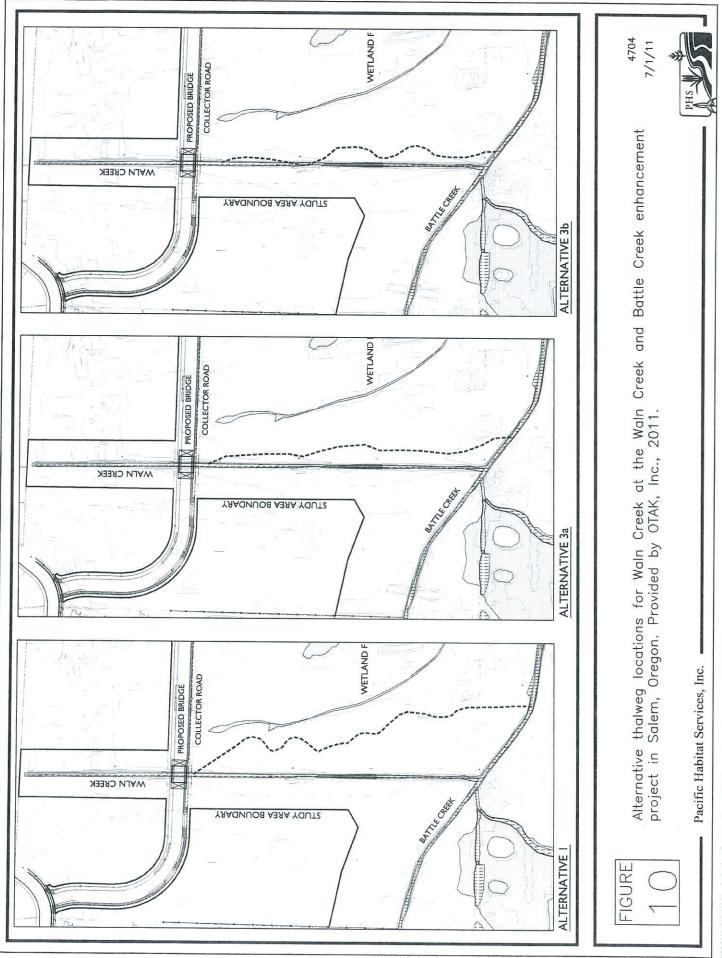
Y:\AUTOCAD\4700\4704 Battle Creek golf course\FIG 050411_ftp\fig rev 070111 project basemap.dwg, 7/11/2011 11:05:44 AM, Letter, 1:1

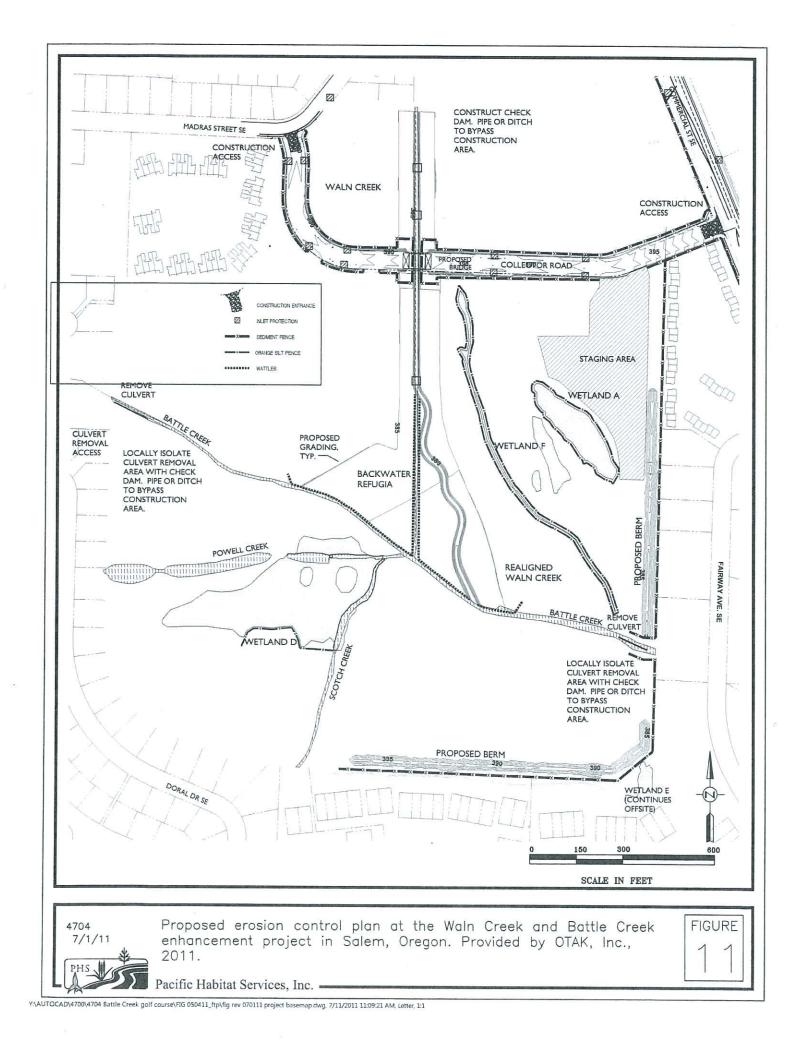

Y:\AUTOCAD\4700\4704 Battle Creek golf course\FIG 050411_ftp\fig rev 070111 project basemap.dwg. 7/12/2011 9:35:43 AM, Letter, 1:1

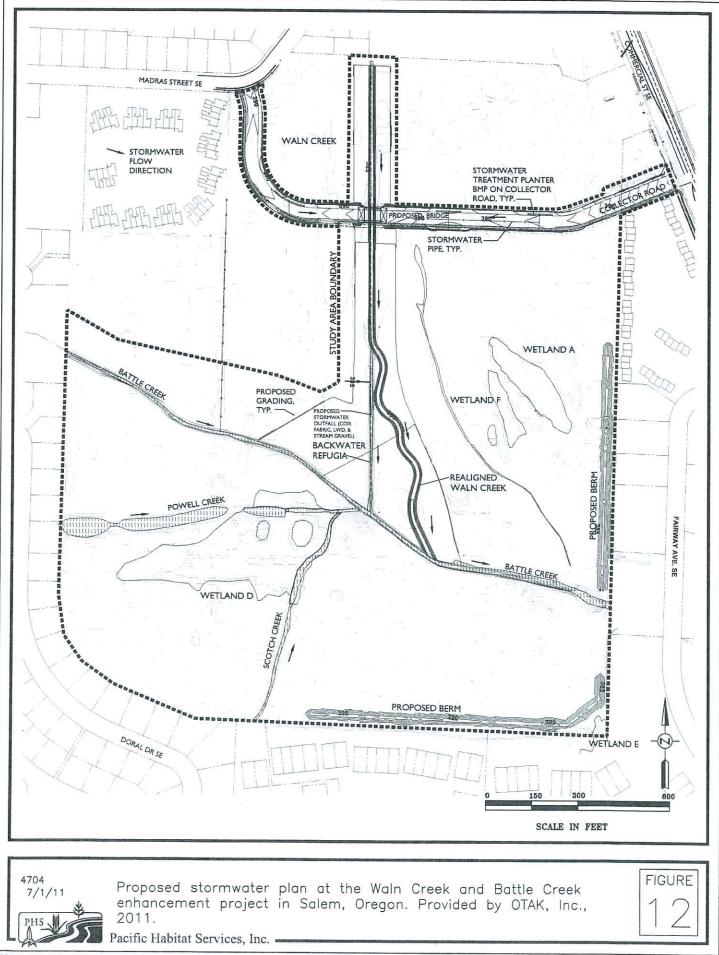
4704 11/1/7 TYPICAL O.C. PLANTING GRID OFFSET PLANTS TO AVOID STRAIGHT ROWS Salem, Oregon. Provided by OTAK, Inc., 2011. See Figure 8 for riparian and disturbance planting limits and Figure 8B for shrub species distribution and notes. Plant list and planting grid at the Waln Creek and Battle Creek enhancement project in 2.18 lbs / acre 2.18 lbs / acre 8.71 lbs / acre 2.18 lbs / acre 43.56 lbs / acre 13.07 lbs / acre 2.18 lbs / acre LBS / ACRE 7.2° 0.C. 7.2' o.c. 7.2' 0.C. 7.2' 0.C. 7.2' 0.C. 7.2' 0.C. 7.2' 0.C. 4.7' o.c. 4.7' o.c. Spacing 4.7' o.c. 4.7' o.c. 4.7' o.c. Size and Description Spacing 4.7' o.c. 4.7' o.c. 4.7' o.c. Size and description Bare root TUFTED HAIRGRASSE / Deschampsia cespitosa WESTERN FESCUE / Festuca occidentalis TALL MANNAGASS / Gyceria elata MEADOW BARLEY / Hordeum brachyantherum STREMBANK LUPWIE / Lupinus rivularis SLENDER HAIRGRASS / Deschampsia elongata QUANTITY COMMON NAME / Botanical name: SPIKE BENTGRASS / Agrostis exarata DOUGLAS HAWTHORNE / Crataegus douglasii BLACK COTTONWOOD / Populus trichocarpa 557 PHYCAP PACIFIC NINEBARK / Physocarpus capitatus Pacific Habitat Services, Inc. 557 CORSEA RED-OSIER DOGWOOD / Comus sericed 371 SAMCER BLUE ELDERBERRY / Sambucus cerulea BIG LEAF MAPLE / Acer macrophylium WESTERN RED CEDAR / Thuja plicata 371 SPIDOU DOUGLAS SPIREA / Spiraea douglasii WESTERN CRABAPPLE / Malus fusca 631 SYMALB SNOWBERRY / Symphoricarpos albus COMMON NAME / Botanical name: 0TY ABBREV. COMMON NAME / Botanical name: WHITE ALDER / Alnus rhombifolia OREGON ASH / Fraxinus latifolia 557 LONINV TWINBERY / Lonicera involucrata 334 ROSNUT NOOTKA ROSE / Rosa nutkana 334 ROSPIS SWAMP ROSE / Rosa pisocarpa 5.69 Acres 247,643 SF * Plant Closer to Stream SEED MIX SHRUBS QUANTTY * 1,511 907 TREES 1,209 302 302 # 1,209 SYMBOL * 605 FIGURE


Y:\AUTOCAD\4700Y4704 Battle Creek golf course\FIG 050411_ftp\fig rev 070111 project basemap.dwg. 7/8/2011 2:06:45 PM, Letter, 1:1


RESTORATION PLANTING NOTES: TOPSOL: EXISTING SITE SOLL SHALL BE PREPARED AND AMENDED IN ACCORDANCE WITH THE DETAILS AND SPECIFICATIONS. PLACE STOCKPILED TOPSOLL TO A DEPTH OF 6" THROUGHOUT ENTIRE PLANTING AREA.	PROVIDE 12" POROUS WEED BARRIER AROUND ALL SHRUBS AND TREES. COVER WITH 3 INCH DEPTH FINE-MEDIUM GRADE FIR/HEMLOCK BARK. KEEP BARK CLEAR OF TREE AND SHRUB STEM BASE. PLANTING POCKETS: BACK FILL PLANT HOLE WITH SOIL EXCAVATED FROM HOLF DO NOT ADD ADDITIONAL AMENDMENTS	LEAVE PLANT NAME IDENTIFICATION TAGS ON TEN PERCENT OF ALL TREES AND SHRUBS INSTALLED TO AID INSPECTORS IN VERIFYNG THAT SPECIFIED PLANTS HAVE BEEN INSTALLED. PLANT CENTER OF SHRUBS A MINIMUM OF 24 INCHES FROM ADJACENT PAVING. PLANT CENTER OF GROUND COVERS A MINIMUM	OF 18 INCHES FROM ADJACENT PAWNG. WHERE PLANT BED SLOPE IS LESS THAN 3% MOUND PLANTING BED AREAS 3% MINIMUM FOR POSITIVE DRAINAGE.	RIPARIAN BUFFER ZONE – TYPICAL PLANTING PLAN RIPARIAN BUFFER PLANTING EXTENDS THROUGHOUT ENTIRE PLANTED AREA ON BOTH SIDES OF WALN CREEK. SEVEN SPECIES OF TREES AND NINE SPECIES OF SHRUBS SHALL BE PLANTED THROUGHOUT AT THE QUANTITIES AND SPACING LISTED BELOW.	TREES AND SHRUBS SHALL BE EVENLY DISTRIBUTED THROUGHOUT THE BUFFER AND BE PLANTED IN A RANDOM TRIANGULAR SPACING PATTERN AS SHOWN ON FIGURE 8A.	DISTRIBUTE ALL TREE SPECIES EVENLY THROUGHOUT ENTIRE BUFFER. PLANT EACH SHRUB SPECIES IN GROUPS OF AT LEAST THREE AND NO MORE THAN TEN.	SEED MIX ON FIGURE BA SHALL BE PLANTED THROUGHOUT THE BUFFER AND ON THE BERMS.	planting notes at the Waln Creek and Battle 4704 Provided by OTAK, Inc., 2011. See Figure 7/1/11 and Figure 8A for plant lists.
(6) SANCER (10) LOWINY (3) PHYCAP	(6) ROSNUT (7) CORSEA (3) SANCER (9) ROSNUT (9) PHYCAP	(7) SANGER (8) SYNALB (9) CONSEA (7) LOWINY (7) LOWINY (8) CONSEA	ANINOT (2) (3) (4) (4) (5) (6) (6) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7	(10) SAMGER (6) CORSEA (5) ROSNUT (5) PHYCAP (4) ROSPIS (6) CORSEA (4) SAMGER (6) CORSEA	ANNOT (2) ANNOT (2) ANNOT (2) ANNOT (2)) SAMCER	SCALE IN FEET	FIGURE Proposed riparian shrub plant distribution and planting Creek enhancement project in Salem, Oregon. Provided 8 for riparian and disturbance planting limits and Figur Pacific Habitat Services, Inc.


Y:\AUTOCAD\4700\4704 Battle Creek golf course\FIG 050411_ftp\fig rev 070111 project basemap.dwg, 7/8/2011 3.02.50 PM, Letter, 1:1


Y:\AUTOCAD\4700\4704 Battle Creek golf course\FIG 050411_ftp\fig rev 070111 project basemap.dwg. 7/12/2011 9:40:14 AM, Letter, 1:1



Y:\AUTOCAD\A700N4704 Battle Creek golf course\FIG 050411_ftp\fig per project basemap alts.dwg, 7/8/2011 2:32:10 PM. Letter, 1:1

Y:\AUTOCAD\4700\4704 Battle Creek golf course\FIG 050411_ftp\fig rev 070111 project basemap.dwg. 7/12/2011 9:45:17 AM, Letter, 1:1

Attachment B

Drainage Easement Kelly-Renfro Property

DRAINAGE AND SEWER PIPELINE EASEMENT

This Drainage and Sewer Pipeline Easement is between Terry J. Kelly and Mary L. Rentfro (Grantor), and the City of Salem, an Oregon municipal corporation (Grantee).

1. Grant of Easement. Grantor for the consideration for no money, but for other good and valuable consideration, the receipt and sufficiency of which is hereby acknowledged, do forever grant unto the Grantee, a permanent easement over and along the full width and length of the premises described as follows, to-wit:

See Exhibit A attached, which is hereafter referred to as "Easement Area" and is as shown on the attached map as Exhibit B.

2. Permanent Easement. The permanent easement shall include the right, privilege, and authority of Grantee to:

- A. Construct, build, excavate, install, patrol, operate, maintain, repair, replace, and inspect a drainage control facility or facilities within said Easement Area, with all appurtenances incident thereto or necessary therewith, for the purpose of carrying, detaining, conveying, cleaning, or protecting water, and for similar uses in, under, over, across, and through the Easement Area. As used herein, drainage facility includes natural drainage facilities, constructed drainage facilities, and any combination thereof;
- B. Construct, place, operate, maintain, repair, replace, relocate, inspect, and remove an underground sanitary sewer pipeline with all appurtenances incident thereto or necessary therewith, including manholes, for the purpose of conveying sewage waste under said premises, together with the right of Grantee to place, excavate, replace, repair, install, maintain, operate, inspect, and relocate pipelines and necessary appurtenances, and make excavations therefor from time to time, in, under, and through the above-described premises within said easement;
- C. Plant, install, establish, maintain, remove, and replace vegetation as necessary within the Easement Area;
- D. Remove from the Easement Area any vegetation, buildings, structures, fences, fill, or other materials or obstructions, or appurtenances attached to or connected therewith, for any reason; and
- E. The right of ingress and egress in, under, over, across, and through the Easement Area at any and all times for any purpose. Grantor shall at all times upon reasonable notice from Grantee remove any surface obstructions or open gates which would otherwise prevent ingress or egress by Grantee.

3. Prohibited Activities. The Grantor is prohibited from engaging in any activity within the Easement Area, or use of the Easement Area, or allowing another to engage in or use the

DRAINAGE EASEMENT – Page 1 of 3 C:MV DOC NETWORKIG/PROJECTS/BATTLECREEK/FINAL CITY REMAINDER ACQUISITIONS/BATTLE CREEK DRAINAGE-SEWER EASEMENT SB JAG.DOC JAG 11-29-11

After recording, return to: City Recorder 555 Liberty Street SE, Room 205 Salem OR 97301-3513 Easement Area, in any manner inconsistent with the purposes of this Easement or detrimental to the Grantee's use of the Easement, including but not limited to:

- A. Excavating, filling, disturbing, damaging, or removing vegetation from the Easement Area without the prior express written consent of Grantee.
- B. Placing, installing, or constructing any buildings, structures, fences, fill, plantings, or other materials or obstructions without the express prior written consent of Grantee.

4. No Waiver of Grantee's Rights. Failure of Grantee to exercise its rights under this Easement in the event of any breach of any term of this Easement by the Grantor shall not be deemed or construed to be a waiver by Grantee of such term or of any subsequent breach of the same or any other term of this Easement or of any of Grantee's rights under this Easement. No delay or omission by Grantee in the exercise of any right or remedy upon any breach by the Grantor shall impair such right or remedy or be construed as a waiver.

5. Representations and Warranties. Grantor represents and warrants that, after reasonable investigation and to the best of its knowledge:

- A. Grantor warrants that it holds fee title to the Easement Area and that Grantee may peaceably enjoy the rights and benefits of this Easement;
- B. Grantor, its successors and assigns, shall indemnify and hold harmless the Grantee, its officers, employees, and agents against any and all liabilities, damages, penalties, losses, claims, demands, actions, suits, and judgments (including attorney fees and costs), and any costs or expenses incurred resulting from the presence of hazardous waste onto or from the Easement Area, including any and all costs associated with clean up or remediation that may be required. This provision shall not apply to a release of hazardous waste onto or from the Easement Area caused by the officers, employees, or agents of Grantee. Any action taken pursuant to this provision shall not constitute an admission of liability or waiver of any defenses to liability. "Hazardous waste" has the same meaning as provided in Oregon Revised Statutes 466.005(7) (2009 ed.);
- C. There is no pending or threatened litigation in any way affecting, involving, or relating to the Easement Area.

6. Indemnification. To the extent permitted by the Oregon Constitution and the Oregon Tort Claims Act, Grantee shall indemnify and hold harmless Grantor, its heirs and assigns, from claims of injury to person or property as a result of the negligence of Grantee, its officers, employees, or agents, relating to Grantee's activities within the Easement Area.

7. Easement and Agreements Run with the Land. This Easement, and the covenants and agreements contained in this Easement, shall run with the land and inure to the benefit of and be binding and obligatory upon the heirs, executors, administrators, successors, and assigns of the respective parties.

DRAINAGE EASEMENT – Page 2 of 3 C:MY DOC NETWORKJG/PROJECTS/BATTLECREEK/FINAL CITY REMAINDER ACQUISITIONS/BATTLE CREEK DRAINAGE-SEWER EASEMENT SB JAG.DOC JAG 11-29-11

Attachment A: Drainage Easement Waln Creek / Battle Creek Project Page 4 of 7

TERRY J. KELLY

STATE OF Oreas County of Marion

This instrument was acknowledged before me on ______ Terry J. Kelly.

)

December 16 2011, by

Notary Public - State of <u>Oregon</u> My commission expires: g/ 9/13

MARY L. RENTFRO

lal

STATE OF Oregon)) County of Marion)

This instrument was acknowledged before me on <u>December</u> 16 2011, by Mary L. Rentfro.

ACCEPTED ON BEHALF OF THE CITY OF SALEM BY:

on

APPROVED AS TO FORM:

City Attorney

Juy Auome

Notary Public - State of Oregon

My commission expires: $\frac{8}{9/13}$

Checked by: Project Number: 710504 Date:

DRAINAGE EASEMENT – Page 3 of 3 C:MY DOC NETWORKJG/PROJECTS/BATTLECREEK/FINAL CITY REMAINDER ACQUISITIONS/BATTLE CREEK DRAINAGE-SEWER EASEMENT SB JAG.DOC JAG 11-29-11

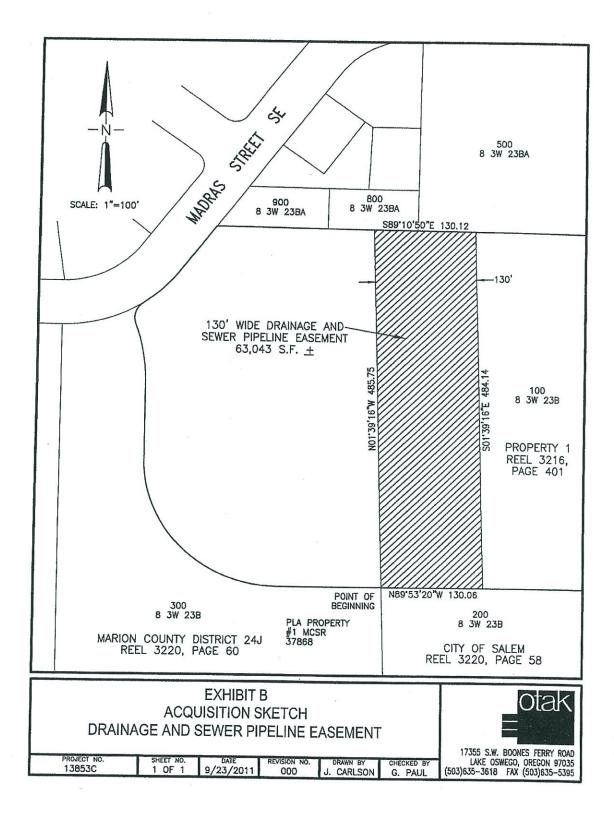
Attachment A: Drainage Easement Waln Creek / Battle Creek Project Page 5 of 7

Tax Lot 100, Map 8 3W 23B Terry J. Kelly and Mary L. Rentfro September 23, 2011

EXHIBIT A

Tract 1 - Drainage and Sewer Pipeline Easement

A strip of land, 130 feet wide, in the northwest one-quarter of Section 23, Township 8 South, Range 3 West, Willamette Meridian, Marion County, Oregon, being a portion of that property described as Property 1 in Exhibit "A" of that Property Line Adjustment Deed recorded in Reel 3216, Page 401, Marion County Records; and being more particularly described as follows:


Beginning at a point on the southerly line of said Reel 3216, Page 401 Property 1 property, said point also being the easterly northeast corner of that property described in that Statutory Warranty Deed to Marion County District 24J, recorded in Reel 3220, Page 60, Marion County Records, being Property #1 PLA Case #10-13 MCSR 37868; thence North 01°39'16" West, a distance of 485.75 feet to the northerly line of said Reel 3216, Page 401 Property 1 property; thence South 89°10'50" East along said northerly line, a distance of 130.12 feet; thence leaving said northerly line South 01°39'16" East, a distance of 484.14 feet to the southerly line of said Reel 3216, Page 401 Property 1 property; thence North 89°53'20" West along said southerly line, a distance of 130.06 feet to the Point of Beginning.

The strip of land to which this description applies contains 63,043 square feet, more or less.

Bearings are based on Marion County Survey Record No. 37867.

Attachment A: Drainage Easement Waln Creek / Battle Creek Project Page 6 of 7

Attachment A: Drainage Easement Waln Creek / Battle Creek Project Page 7 of 7

REEL: 3346

PAGE: 308

January 03, 2012, 02:47 pm.

CONTROL #: 307461

State of Oregon County of Marion

I hereby certify that the attached instrument was received and duly recorded by me in Marion County records:

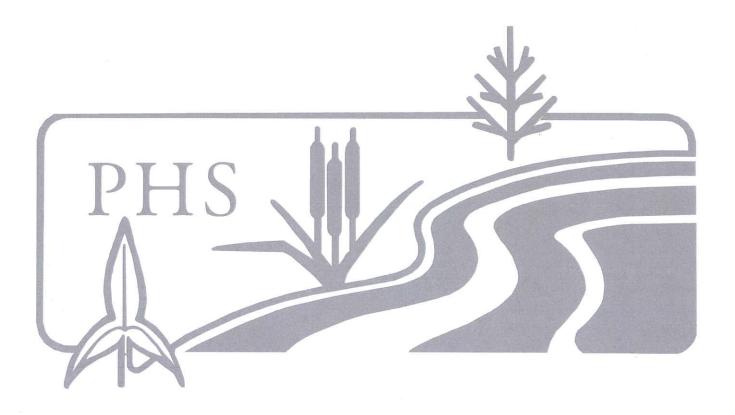
FEE: \$ 66.00

BILL BURGESS COUNTY CLERK

THIS IS NOT AN INVOICE.

Attachment C

Land Use Affadavit



	IG DEPARTMENT AFFIDAVIT DCAL PLANNING OFFICIAL) *
I have reviewed the project outlined in this application and have determin This project is not regulated by the comprehensive plan and lan This project is consistent with the comprehensive plan and land This project will be consistent with the comprehensive plan and Conditional Use Approval Development Permit Other	d use regulations.
	r local approvals checked above.
Local planning official name (print) Signature	ASSOC Planner Solum 6/29/11
If the proposed activity described in your permit application is within the application can be processed. A public notice will be issued with the certi Land Conservation and Development for its concurrence or objection. For contact the department at 635 Capitol Street NE, Suite 150, Salem, Oregon	fication statement, which will be forwarded to the Oregon Department of r additional information on the Oregon Coastal Zone Management Program, n 97301 or call 503-373-0050.
I certify that, to the best of my knowledge and belief, the proposed activity Zone Management Program and will be completed in a manner consistent Print /Type Name	ON STATEMENT y described in this application complies with the approved Oregon Coastal with the program.
Applicant Signature	Date

Source: Corps/DSL Joint Permit Application

Attachment D

Adjacent Landowners

083W14CD02100 LARRY L SCHNELL PO BOX 51900 SPARKS NV 89435	083W14CD02200, 2201 MADRAS PROPERTIES INC WALTER B WELLS,TRE PO BOX 56 TURNER OR 97392	083W23A 01000, 01100, 083W23B 00100, 00101, 083W23BA00400 TERRY J KELLY 6448 DORAL DR SE SALEM OR 97306
083W23A 00801 SPIRIT MASTER FUNDING II LLC PO BOX 3125 SALEM OR 97302	083W23A 00802 DAV II INVESTMENT GROUP PO BOX 3308 SALEM OR 97302	083W23A 01200, 01300, 01400, 01600 JONES LT LESLIE J BRAME 2027 RIVERKNOLL CT WEST LINN OR 97068
083W23A 01800 BATTLECREEK INVESTMENTS OF OREG PO BOX 1159 WILSONVILLE OR 97070	083W23A 90000 U S HOUSING & DEVELOPMENT CORP 1469 CAPITOL ST NE SALEM OR 97303	083W23A 90001 NANCY R RAY 6371 FAIRWAY AV SE SALEM OR 97306
083W23A 90002	083W23A 90003	083W23A 90004
ALAN J BEYER	DAVID W WEINER	BRENDA BROOKS POST
6369 FAIRWAY AV SE	6367 FAIRWAY AV SE	6487 VILLAGE PKWY
SALEM OR 97306	SALEM OR 97306	ANCHORAGE AK 99504
083W23A 90005	083W23A 90006	083W23A 90007
ANNA M GREVEN	VIRGIL E ANDERSON	TERRI L CHAPMAN
6383 FAIRWAY AV SE	6361 FAIRWAY AV SE NO 6	6359 FAIRWAY AV SE
SALEM OR 97306	SALEM OR 97306	SALEM OR 97306
083W23A 90008	083W23A 90009	083W23A 90010
LINDA BEMIS	GAYLE L ALLEN-RUDDELL	LISA E TAYLOR
6357 FAIRWAY AV SE	6355 FAIRWAY AV SE	6353 FAIRWAY AV SE
SALEM OR 97306	SALEM OR 97306	SALEM OR 97306
083W23A 90011 LAURIE J POST 6351 FAIRWAY AV SE SALEM OR 97306	083W23A 90012 ASHLEY YOUNG 6349 FAIRWAY AV SE SALEM OR 97306	083W23A 90013 ERIC MITCHELL ELROD LT C/O DIANE GORDON 500 WEST HARBOR DR NO 512 SAN DIEGO CA 92101
083W23A 90014	083W23A 90015	083W23A 90016
JOHN J MISA	CHRISTINE E PARTAIN	SHARON K ELLIOTT
6345 FAIRWAY AVE SE	6343 FAIRWAY AV SE	6341 FAIRWAY AVE SE
SALEM OR 97306	SALEM OR 97306	SALEM OR 97306
083W23A 90017	083W23A 90018	083W23A 90019
LARRY H BOSELL	MICHAEL J TUEL	DAVID B TULLIS
48 NORTH JOHN ST	6337 FAIRWAY AV SE	6335 FAIRWAY AV SE
BLOOMFIELD IN 47424	SALEM OR 97306	SALEM OR 97306
083W23A 90020, 083W23CA 10800	083W23A 90021	083W23A 90022
JONG C YEE	SHAWN E BATY	DAVID R WESTMARK
1920 SPICETREE LN SE	6331 FAIRWAY AV SE	6329 FAIRWAY AV SE
SALEM OR 97306	SALEM OR 97306	SALEM OR 97306

Attachment C: Adjacent Land Owners Waln Creek / Battle Creek Project Page 3 of 12

083W23A 90023	083W23A 90024	083W23A 90025
ROGER S MINTEN	WILLIAM R IMPEY	MATTHEW S CAUDILLO
6327 FAIRWAY AV SE	5511 SE SCENIC LN NO 203	6323 FAIRWAY AVE SE NO 25
SALEM OR 97306	VANCOUVER WA 98661	SALEM OR 97302
083W23A 90026 FEDERAL NATIONAL MORTGAGE ASSC 888 E WALNUT ST PASADENA CA 91101	083W23A 90027 JAMES G LOVE 6319 FAIRWAY AV SE SALEM OR 97306	083W23A 90028 MICHELLE C LETOUMEAU 6317 FAIRWAY AV SE SALEM OR 97306
083W23A 90029	083W23A 90030	083W23A 90031
LINDA L OSKO	WILLIAM R IMPEY	PATRICIA C PEARSON REV TR
6315 FAIRWAY AVE SE	57395 COLONIAL	6311 FAIRWAY AV SE
SALEM OR 97306	LA QUINTA CA 92253	SALEM OR 97306
083W23A 90032 ELLEN CORBELL 6309 FAIRWAY AV SE SALEM OR 97306	083W23A 90033 BUCKNELL FAM TR RICHARD G BUCKNELL 6307 FAIRWAY AV SE SALEM OR 97306	083W23A 90034 LAURA J BERTELSON 6305 FAIRWAY AV SE SALEM OR 97306
083W23A 90035	083W23A 90036	083W23A 90037
DORENE A KUTSCH	DALE L VAN LYDEGRAF LT	CAROL A RUSSELL
1078 KERRISDALE DR SE	PO BOX 4369	6251 FAIRWAY AV NE
ALBANY OR 97322	SALEM OR 97302	SALEM OR 97306
083W23A 90038	083W23A 90039	083W23A 90040
PATRICK J BRADLEY	GRACETTA THOMPSON	JENNIFER L OHTA
1971 CHURCH ST NE	6255 FAIRWAY AV SE	6257 FAIRWAY AV SE
SALEM OR 97301	SALEM OR 97306	SALEM OR 97306
083W23A 90041	083W23A 90042	083W23A 90043
CATHLEEN J BOWERSOX	DAVID J JACKSON	JAMES LEROY EVANS
6259 FAIRWAY AV SE	6261 FAIRWAY AV SE	18895 FROST RD
SALEM OR 97306	SALEM OR 97306	DALLAS OR 97338
083W23A 90044	083W23A 90045	083W23A 90046
SCOTT A LUDVIKSEN	DAVID L MELSHA	RON HELMS
6267 FAIRWAY AV SE	3465 CONTINENTAL DR SE	PO BOX 3456
SALEM OR 97306	TURNER OR 97392	SOLDOTNA AK 99669
083W23A 90047	083W23A 90048	083W23A 90049
LAURIE K BOYLE	CHERYL L SIMPSON	REBECCA J LEITHOLD
6273 FAIRWAY AVE SE	PO BOX 13493	6277 FAIRWAY AVE SE
SALEM OR 97306	SALEM OR 97309	SALEM OR 97306

Attachment C: Adjacent Land Owners Waln Creek / Battle Creek Project Page 4 of 12

083W23A 90050 FRANCES B BROWN TR C/O MARY BROWN 1165 ACADEMY ST MT ANGEL OR 97362	083W23A 90051 ETTA ARCHER GROSS 6281 FAIRWAY AV SE SALEM OR 97306	083W23A 90052 CAROL R BAKER 6283 FAIRWAY AV SE SALEM OR 97306
083W23A 90053 RAYMOND FISHER TR <randall d="" jeffers<br="">10668 CROSBY RD NE WOODBURN OR 97071</randall>	083W23A 90054 KELLY B ALBRECHT KEITH W NUTTER 21641 SE MAIN ST GRESHAM OR 97030	083W23A 90055 ROBIN D MORTON 106 OLYMPIC AV SE SALEM OR 97306
083W23A 90056	083W23A 90057	083W23A 90058
CHRISTINA L BASSO-LENZ	JUSTIN BRETT HUTCHINSON	S FRANK THOMPSON
6291 FAIRWAY AV SE	5678 SUGAR PLUM AV SE	6295 FAIRWAY AVE SE
SALEM OR 97306	SALEM OR 97306	SALEM OR 97306
083W23A 90059	083W23A 90060	083W23B 00300
CHARLOTTE L RYAN	RONDA R COUCH-EBERZ	SALEM-KEIZER SCHOOL DIST 24J
6297 FAIRWAY AV SE	6299 FAIRWAY AV SE	3630 STATE ST
SALEM OR 97306	SALEM OR 97306	SALEM OR 97301
083W23BA00500 VILLA FORTY LLC PO BOX 2285 SALEM OR 97308	083W23BA00600, 00700, 00800, 00900, 1000, 01100 LOWELL A SMITH 4120 CROISAN CREEK RD S SALEM OR 97302	083W23BA01300 DAVID A BOWMAN 7840 LIBERTY RD S SALEM OR 97306
083W23BA01400 JAMES F SMITH 6754 RIPPLING BROOK DR SE SALEM OR 97301	083W23BA03400 CRYSTAL L CORNEJO 1585 MADRAS ST SE SALEM OR 97306	083W23BB03500, 03600, WILLIAM H CHARNHOLM RT BETTY J CHARNHOLM RT 1323 CHEMEKETA ST NE SALEM OR 97301
083W23BB03700	083W23BB90001	083W23BB90002
RYAN WHITSON	GERRITT HOUDYSHELL	CHERYL L HOPKINS
6220 13TH AVE SE	695 WINDING WAY SE	1478 MADRAS ST SE
SALEM OR 97306	SALEM OR 97302	SALEM OR 97306
083W23BB90003	083W23BB90004	083W23BB90005
RONALD D ALLOWITZ	MAUREEN SMITH	DESMOND HARPSTER
1480 MADRAS ST SE	1482 MADRAS ST SE	1484 MADRAS ST SE
SALEM OR 97306	SALEM OR 97306	SALEM OR_97306
083W23BB90006	083W23BB90007	083W23BB90008
CAROLYNNE J PHILLIPS	R DEAN MANWARING	JOAN L FRYE TR
1486 MADRAS ST SE	1488 MADRAS ST SE	1490 MADRAS ST SE
SALEM OR 97306	SALEM OR 97306	SALEM OR 97306

Attachment C: Adjacent Land Owners Waln Creek / Battle Creek Project Page 5 of 12

083W23BB90009	083W23BB90010	083W23BB90011
NORMA J OSTRANDER	MARY E COULTER	JOHN J SCHMITZ
PO BOX 296	1494 MADRAS SE	1496 MADRAS SE
TURNER OR 97392	SALEM OR 97306	SALEM OR 97306
083W23BB90012	083W23BB90013	083W23BB90014
MARGOT L CROW	MICHAEL J WAUGE	BARBARA J LANGE
1498 MADRAS ST SE	1500 MADRAS ST SE	1502 MADRAS ST SE
SALEM OR 97306	SALEM OR 97306	SALEM OR 97306
083W23BB90015	083W23BB90016	083W23BB90017
KATHERINE L HANCOCK	CONNIE R NESSL	ALMA WAUGE
1504 MADRAS ST SE	1506 MADRAS ST SE	1508 MADRAS ST SE
SALEM OR 97306	SALEM OR 97306	SALEM OR 97306
083W23BB90018	083W23BB90019	083W23BB90020
NANCY A WEBER	INEZ R HALVERSON	S DAHLIA HAN
1510 MADRAS ST SE	1512 MADRAS ST SE	1514 MADRAS ST SE
SALEM OR 97306	SALEM OR 97306	SALEM OR 97306
083W23BB90021	083W23BB90022	083W23BB90023
THOMAS FAMILY TR	GREGORY L GOYINS	NIOMA JEAN CUTLER
1516 MADRAS ST SE	4724 BRADFORD LP SE	1520 MADRAS ST SE
SALEM OR 97306	SALEM OR 97302	SALEM OR 97306
083W23BB90024	083W23BB90025	083W23BB90026
HSBC MORTGAGE SERVICES INC	MICHAEL L MANNING	ELIZABETH L EKSTROM
2929 WALDEN AV	1754 CUMULUS CT NW	1526 MADRAS ST SE
DEPEW NY 14043	SALEM OR 97304	SALEM OR 97306
083W23BB90027	083W23BB90028	083W23BB90029
MARNI S WATTS	SUSAN BERG	JOHN R COCHENOUR
1528 MADRAS ST SE	2427 CORAL AV NE APT D	1532 MADRAS ST SE
SALEM OR 97306	SALEM OR 97305	SALEM OR 97306
083W23BB90030	083W23BB90031	083W23BB90032
SUNNY RONDA RAE	MURPHY FAM TR	PAUL D KRISSEL
1534 MADRAS SE	1536 MADRAS ST SE	1675 HIGH ST SE
SALEM OR 97306	SALEM OR 97306	SALEM OR 97302
083W23BE90033 FEDERAL HOME LOAN C/O RECONTRUST COMPANY 400 COUNTRYWIDE WY SV 35 SIMI VALLEY CA 93065	083W23BB90034 SHIRLEY J HERRMANN, TRUSTEE 1560 MADRAS ST SE SALEM OR 97306	083W23BB90035 KEVIN B WIENHOFF 1558 MADRAS ST SE SALEM OR 97306

•

083W23BB90036	083W23BB90037	083W23BB90038
KENNETH M STEWART	AMPARO SIMS TESTAMENTARY TR	KATHRYN E KENEFICK
1556 MADRAS ST SE	1554 MADRAS ST SE	1552 MADRAS ST SE
SALEM OR 97306	SALEM OR 97306	SALEM OR 97306
083W23BB90039 G ELAINE SELBERG 1550 MADRAS ST SE SALEM OR 97306	083W23BB90040 KENNETH B PITMAN 1548 MADRAS ST SE SALEM OR 97306	083W23BB90041 DALY JRLT ELISABETH, DALY TRE 1546 MADRAS ST SE SALEM OR 97306
083W23BB90042	083W23BB90043	083W23BB90044
STEVEN W TUTTLE	RICHARD L ODELL	CYNTHIA FREEMAN
1544 MADRAS ST SE	5513 DEAN COURT SE	1540 MADRAS ST SE
SALEM OR 97306	SALEM OR 97301	SALEM OR 97306
083W23BC00500	083W23BC00700	083W23BC00800
DONALD R CAUSEY	DIANA L LARONT	JOSEPH C DAVIDSON
PO BOX 12488	1475 PACWOOD CT SE	1480 PACWOOD CT S
SALEM OR 97309	SALEM OR 97306	SALEM OR 97306
083W23BC01400	083W23BC01900	083W23BC02000
KAY PATRICIA RENTCHLER	CITY OF SALEM	EVA H SLINKER LT
6386 13TH AV SE	350 COMMERCIAL ST NE	6418 DORAL DR SE
SALEM OR 97302	SALEM OR 97301	SALEM OR 97306
083W23BC02100	083W23BC02200	083W23BC02300
RICHARD A & GLORIA J ROSENAU	MOLLY F WOOLARD	MARY L RENTFRO
6428 DORAL DR SE	PO BOX 4132	6448 DORAL DR SE
SALEM OR 97306	SALEM OR 97302	SALEM OR 97306
083W23BC02400 ETHEL V PATRICK TR 6458 DORAL DR SE SALEM OR 97306	083W23BC02500 JAMES J BRIGGS 6468 DORAL DR SE SALEM OR 97306	083W23BC02600 ROBERT & CLARISE WARREN, TRUSTEE 6488 DORAL DRIVE SE SALEM OR 97306
083W23CA00100 BATTLECREEK COMMONS ASSOCIATION 6585 FAIRWAY AV SE SALEM OR 97306	083W23CA00200 HOWARD E & CLETA L HEINKEL 1825 LEXINGTON CIRCLE SE SALEM OR 97306	083W23CA00300 NANCY S GUTH 1827 LEXINGTON CR SE SALEM OR 97306
083W23CA00400	083W23CA00500	083W23CA00600
MARY FORD	THOMAS A TURNER	ROBERT R & ROSALIND E HELBER
1829 LEXINGTON CR SE	1831 LEXINGTON CR SE	1833 LEXINGTON CIRCLE SE
SALEM OR 97306	SALEM OR 97306	SALEM OR 97306
	1	

Attachment C: Adjacent Land Owners Waln Creek / Battle Creek Project Page 7 of 12

083W23CA00700	083W23CA00800	083W23CA00900
LEA N SPENCER	ALBERT JASSO	CORNELIUS C & MICKEY K PUCKETT
1835 LEXINGTON CR SE	1795 FAIRMOUNT AV S	1839 LEXINGTON CIRCLE SE
SALEM OR 97306	SALEM OR 97302	SALEM OR 97306
083W23CA01000	083W23CA01100	083W23CA01200
DONALD H SMITH	MARTHA A HOWELL	DAVID D PALLETT, ET AL
1841 LEXINGTON CR SE	1843 LEXINGTON CR SE	11871 SE EOLA HILLS DR
SALEM OR 97306	SALEM OR 97306	AMITY OR 97101
083W23CA01300	083W23CA01400	083W23CA01500
BARBARA A TURNER	KARIN E NILSSON	FRANCIS C & ANITA L FARNELL
1847 LEXINGTON CR SE	1849 LEXINGTON CIR SE	1851 LEXINGTON CIRCLE SE
SALEM OR 97306	SALEM OR 97306	SALEM OR 97306
083W23CA01600	083W23CA01700	083W23CA01800
SHIRLEY A SOBIE	YVONNE KELLEY	KATHERINE ANDERSON
1853 LEXINGTON CR SE	1855 LEXINGTON CR SE	1857 LEXINGTON CR SE
SALEM OR 97306	SALEM OR 97306	SALEM OR 97306
083W23CA01900	083W23CA02000	083W23CA02100
JANICE E ROBERTS	JOYCE A MURRAY	ANNETTE HENRY
1859 LEXINGTON CR SE	1861 LEXINGTON CR SE	1863 LEXINGTON CIR SE
SALEM OR 97306	SALEM OR 97306	SALEM OR 97306
083W23CA02200	083W23CA02300	083W23CA02400
THOMAS C PAULUS	DIANE STOUT	DONNA LOCKE
1865 LEXINGTON CIR SE	1867 LEXINGTON CR SE	1869 LEXINGTON CR SE
SALEM OR 97306	SALEM OR 97306	SALEM OR 97306
083W23CA02500	083W23CA02600	083W23CA02700
PAUL MCCOUBREY	JAMES E EARHART	EDWARD C HALL
6635 CONTINENTAL CR SE	1873 LEXINGTON CR SE	1669 ANKENY HILL RD SE
SALEM OR 97306	SALEM OR 97306	JEFFERSON OR 97352
083W23CA02800 CUNNINGHAM LT DONNA J CUNNINGHAM, TRE 1877 LEXINGTON CR SE SALEM OR 97306	083W23CA02900 KEITH G EDDY 1879 LEXINGTON CR SE SALEM OR 97306	083W23CA03000 ROBERT R JOHNSON 4050 12TH ST CUTOFF NO 132 SALEM OR 97302
083W23CA03100	083W23CA03200	083W23CA03300
RONALD W DEPUY	ARTHUR A & MARY H BIRKBY	GARY E UPHAM
1883 LEXINGTON CR SE	1885 LEXINGTON CR SE	PO BOX 245
SALEM OR 97306	SALEM OR 97306	RHODODENRON OR 97049

Attachment C: Adjacent Land Owners Waln Creek / Battle Creek Project Page 8 of 12

		4
083W23CA03400 GLEN W KNICKERBOCKER 1889 LEXINGTON CR SE SALEM OR 97306	083W23CA03500 ANDER RT C/O HAGERMAN,GEORGETTE 3264 LIBERTY RD S SALEM OR 97302	083W23CA03600 FL PATRICK RLT 1893 LEXINGTON CR SE SALEM OR 97306
083W23CA03700 LAVERNA J SHEPHERD 1895 LEXINGTON CR SE SALEM OR 97306	083W23CA03800 BATTLECREEK COMMONS ASSOCIATION 1823 LEXINGTON CR SE SALEM OR 97306	083W23CA03900 MAE CULVER 6587 FAIRWAY AV SE SALEM OR 97306
083W23CA04000	083W23CA04100	083W23CA04200
JAMES J BURNETTE	DOROTHY J OLSON RLT	HOLLAND REVOCABLE LIVING TRUST
6589 FAIRWAY AV SE	6591 FAIRWAY AV SE	6611 FAIRWAY AV SE
SALEM OR 97306	SALEM OR 97306	SALEM OR 97306
083W23CA04300	083W23CA04400	083W23CA04500
ARLENE D BENNETT	LINDA H NORRIS	MARY S MACDONALD
6615 FAIRWAY AV SE	6700 CONTINENTAL CR SE	6706 CONTINENTAL CR SE
SALEM OR 97306	SALEM OR 97306	SALEM OR 97306
083W23CA04600 WARREN W COOLEY BYPASS TR ANNE S COOLEY, TRE 6710 CONTINENTAL CR SE SALEM OR 97306	083W23CA04700 J W & MARY LOU BARTOSZ 6716 CONTINENTAL CR SE SALEM OR 97306	083W23CA04800 MARY K SCHROEDER 6720 CONTINENTIAL CR SE SALEM OR 97306
083W23CA04900	083W23CA05000	083W23CA05100
PHIL B FORD	SANDRA A SIEWERT	RICHARD A & SHARRON M SEIDEMAN
6726 CONTINENTAL CR SE	6756 CONTINENTAL CIR SE	6750 CONTINENTAL CR SE
SALEM OR 97306	SALEM OR 97306	SALEM OR 97306
083W23CA05200	083W23CA05300	083W23CA05400
HILDEGARD REGINA SERRATT RLT	BETTY-COE DEBROKERT	WILLIAM PRITCHETT
4616 GOLDENROD AV NE	1931 YOLANDA AV	6686 CONTINENTAL CR SE
SALEM OR 97305	SPRINGFIELD OR 97477	SALEM OR 97306
083W23CA05500	083W23CA05600	083W23CA05700
GLADYS J HARTMAN RLT	JOSEPH LEO THIMM JR TR	MICHAEL A MCCAFFREY
6680 CONTINENTAL CR SE	6746 CONTINENTAL CR SE	6740 CONTINENTAL CIR SE
SALEM OR 97302	SALEM OR 97306	SALEM OR 97306
083W23CA05800 LEE A DAVIS PO BOX 706 SALEM OR 97308	083W23CA05900 MARY E RUE TRUST 6730 CONTINENTAL CR SE SALEM OR 97306	083W23CA06000 JOSEPH C &EDITH W-TR BENNINGHOFF 6676 CONTINENTAL CIR SE SALEM OR 97306

083W23CA06100	083W23CA06200	083W23CA06300
PETER GARTLAN	SANDRA R MELHORN	WILLIAM ZIRBES
6670 CONTINENTAL CR SE	6666 CONTINENTAL CR SE	6660 CONTINENTAL CR SE
SALEM OR 97306	SALEM OR 97306	SALEM OR 97306
083W23CA06400 RUTH A LONDBERG LT 6785 CONTINENTAL CR SE SALEM OR 97306	083W23CA06500 CATHY KOUGH EVAN TYLOR YOUNG 6775 CONTINENTAL CR SE SALEM OR 97306	083W23CA06600 ANNE D JETER 6765 CONTINENTAL CR SE SALEM OR 97306
083W23CA06700 REX O DART 6755 CONTINENTAL CR SE SALEM OR 97306	083W23CA06800 LAVERNE G NELSON 6745 CONTINENTAL CR SE SALEM OR 97306	083W23CA06900 ELEANOR THOMPSON FAM TR JOHN S THOMPSON TR 6735 CONTINENTAL CR SE SALEM OR 97306
083W23CA07000 ROLAND & MARJORIE GORHAM FAM TR 6725 CONTINENTAL CR SE SALEM OR 97306	083W23CA07100 MITTI D HINZ 6715 CONTINENTAL CR SE SALEM OR 97306	083W23CA07200 DAVID L WOOD 6705 CONTINENTAL CR SE SALEM OR 97306
083W23CA07300	083W23CA07400	083W23CA07500
ROBERT F MCNALLY, SR	MARCIA F HERRING	KATHRYN L STOPHER
6695 CONTINENTAL CR SE	6685 CONTINENTAL CR SE	5773 FLAIRSTONE DR SE
SALEM OR 97306	SALEM OR 97306	SALEM OR 97306
083W23CA07600 MICHAEL A CULBERTSON 6665 CONTINENTAL CR SE SALEM OR 97306	083W23CA07700 BOWERSOX FAM TR JUNE A BOWERSOX, TRE 6655 CONTINENTAL CR SE SALEM OR 97306	083W23CA07800 LLOYD S & JUDITH W SMITH, TRUST 6645 CONTINENTAL CIRCLE SE SALEM OR 97306
083W23CA07900	083W23CA08000	083W23CA08100
PATRICIA L BOURSON	JEAN M RENNEBOHM TR	AMARYLLIS LILLES POWELL
6635 CONTINENTAL CR SE	6625 CONTINENTAL CR S	6615 CONTINENTAL CIR SE
SALEM OR 97306	SALEM OR 97306	SALEM OR 97306
083W23CA08200	083W23CA08300	083W23CA08400
NORMAN R MILLER	DENNIS D LEE	JO ANN RUNYON, TRUSTEE
6620 CONTINENTAL CR SE	5014 S MOUNTAIN TERRACE WY	6630 CONTINENTAL CR SE
SALEM OR 97306	PORT ANGELES WA 98362	SALEM OR 97306
083W23CA08500	083W23CA08600	083W23CA08700
JOHN W DAY RLT	RICHARD & ANGELYN BYLSMA, TRUST	JUNE G MCCALLISTER, TRUST
6636 CONTINENTAL CR	6640 CONTINENTAL CIRCLE SE	6646 CONTINENTAL CIR SE
SALEM OR 97306	SALEM OR 97306	SALEM OR 97306

083W23CA08800 DORIS R REYNOLDS RLT 6650 CONTINENTAL CR SE SALEM OR 97306	083W23CA08900 PAUL MCCOUBREY 2008 TR 6656 CONTINENTAL CR SE SALEM OR 97306	083W23CA09100 RHODES S & JEAN L SKILLMAN, TRUST 6520 HUNTINGTON CIR SE SALEM OR 97306
083W23CA09200	083W23CA09300	083W23CA09400
JILL READ	ELIZABETH R COLLINS, TRUST	SANDRA KAY HAYNES
6524 HUNTINGTON CR SE	6530 HUNTINGTON CR SE	7483 SW LAKESIDE LP
SALEM OR 97306	SALEM OR 97306	WILSONVILLE OR 97070
083W23CA09500 GREEN LT KATHLEEN M GREEN, TRE 6540 HUNTINGTON CR SE SALEM OR 97306	083W23CA09600 CHARLOTTE R MARTIN, TRUSTEE 6544 HUNTINGTON CR SE SALEM OR 97306	083W23CA09700 PEG 6550 HUNTINGTON CR SE SALEM OR 97306
083W23CA09800	083W23CA09900	083W23CA10000
ARLYCE J BURKE TR	EDEN WEST LLC	STEVEN K STARKEY
6554 HUNTINGTON CR SE	6560 HUNTINGTON CR SE	6564 HUNTINGTON CR SE
SALEM OR 97306	SALEM OR 97306	SALEM OR 97306
083W23CA10100 HENRY E SHOUDY 1033 TWIN HILLS DR SE JEFFERSON OR 97352	083W23CA10200 SALLY A HOLCOMB CREDIT SHELTER T C/O GREG KUPILLAS 18487 S VALLEY VISTA RD MULINO OR 97042	083W23CA10300 HOWARD R HANNAN 6580 HUNTINGTON CR SE SALEM OR 97306
083W23CA10400	083W23CA10500	083W23CA10600
NANCY C CLARK	AGNES DIRKSEN	HELEN D WEST TR
6584 HUNTINGTON CR SE	6590 HUNTINGTON CR SE	6594 HUNTINGTON CR SE
SALEM OR 97306	SALEM OR 97306	SALEM OR 97306
083W23CB00900 JOHN C SHEPARD, JR LYNANN L SHEPARD 5596 DORAL DRIVE SE SALEM OR 97306	083W23CA10900 MELVIN J & B JEAN DOWNING 6599 HUNTINGTON CIRCLE SE SALEM OR 97306	083W23CA11000 RAYMOND C NORVELL 6514 HUNTINGTON CR SE SALEM OR 97306
083W23CA11100	083W23CA11200	083W23CA11300
DONNA M POLIVKA	RUTH L JOHNSON RLT	DONALD & BARBARA L EDWARDS
5510 HUNTINGTON CIRCLE SE	6504 HUNTINGTON CR SE	6500 HUNTINGTON CR SE
SALEM OR 97306	SALEM OR 97306	SALEM OR 97306
083W23CA11400	083W23CA11500	083W23CA11600
PHYLLIS E NYGAARD	DONALD LEE ANDERSON	RICHARD & MARY T DALKE, TR/TRE
5674 HUNTINGTON CR SE	6670 HUNTINGTON CR SE	6664 HUNTINGTON CR
SALEM OR 97306	SALEM OR 97306	SALEM OR 97306
83W23CA11700	083W23CA11800	083W23CA11900
ARREL TOWERY	SUSAN KRAGT	MARY LOU BECK
660 HUNTINGTON CR SE	6654 HUNTINGTON CR SE	6650 HUNTINGTON CR SE
ALEM OR 97306	SALEM OR 97306	SALEM OR 97306

083W23CA12000 EMMA L PFEIFFER TRUST 6644 HUNTINGTON CR SE SALEM OR 97306	083W23CA12100 PHILLIP R & VIRGINIA A COLGAN, TR 6640 HUNTINGTON CR SE SALEM OR 97306	083W23CA12200 WARREN J THOMPSON 6634 HUNTINGTON CR SE SALEM OR 97306
083W23CA12300 SHIRLEY J BITTNER GARY V BITTNER 6630 HUNTINGTON CR SE SALEM OR 97306	083W23CA12400 JOHANNA B RUGGLES 6614 HUNTINGTON CIRCLE SE SALEM OR 97306	083W23CA12500 DORIS M POWERS FAM TR 6610 HUNTINGTON CR SE SALEM OR 97306
083W23CA12600 MICHAEL P CAMPBELL 6604 HUNTINGTON CR SE SALEM OR 97306	083W23CA12700 BAUER LT CATHERINE E BAUER, TRE 74670 GAUCHO WAY THOUSAND PALMS CA 92276	083W23CA12900 THOMAS H GREGSON 1805 B ST HOOD RIVER OR 97031
083W23CA13000 DALTON LT JEANNE R DALTON, TRE 6619 HUNTINGTON CR SE SALEM OR 97306	083W23CA13100 PHYLLIS D TARTER, TRUSTEE 6625 HUNTINGTON CIRCLE SE SALEM OR 97306	083W23CA13200 DONALD F & JANET L ELLIOTT 6629 HUNTINGTON CIR SE SALEM OR 97306
083W23CA13300 LOIS M TUTTLE 6675 HUNTINGTON CR SE SALEM OR 97306	083W23CA13400 ROBERT F SASSEEN 6677 HUNTINGTON CR SE SALEM OR 97306	083W23CA13500 JOHN KONOPASEK, JR PO BOX 4194 SALEM OR 97302
083W23CA13600 CHARLES F WARREN 6681 HUNTINGTON CR SE SALEM OR 97306	083W23CA13800 JULIE B GOSS TR C/O JEFFREY CLARK 100 N BROADWAY MO2-100-07-18 ST LOUIS MO 63102	083W23CA13900 DANIEL P & F JUANITA HEIKEN 6684 HUNTINGTON CIRCLE SE SALEM OR 97306
083W23CA14000 JAMES L & HOPE L TACCHINI LT HOPE L TACCHINI, TRE 6690 HUNTINGTON CR SE SALEM OR 97306	083W23CA14100 L DAVID SHERMAN 6694 HUNTINGTON CR SE SALEM OR 97306	083W23CA14200 WILLIAM F MARQUARDT 6700 HUNTINGTON CR SE SALEM OR 97306
083W23CA14300 WILLIAM H ROTH 6704 HUNTINGTON CR SE SALEM OR 97306	083W23CA14400 RICK L SCOTT 3685 LACHS CT S SALEM OR 97302	083W23CA14600 SHERRIE ANN KENER 6720 HUNTINGTON CIR SE SALEM OR 97306
083W23CA14700 BLANCHE E RATHE LE GURCHE RLT 6724 HUNTINGTON CR SE SALEM OR 97306	083W23CA14800 ARTHUR J DURASKI 6734 HUNTINGTON CIR SE SALEM OR 97306	083W23CA14900 GIERING FAM TR EVA M GIERING, TRE PO BOX 261 LINCOLN CITY OR 97367
	the second secon	· · · · · · · · · · · · · · · · · · ·

083W23CA15000 KIRBY FAM TR 6750 HUNTINGTON CR SE SALEM OR 97306	083W23CA15100 ABNER O & MYRNA Y WALDRON 6754 HUNTINGTON CR SE SALEM OR 97306	083W23CA15300 COSENTINO FAM TRUST OF 1994 JO ANN COSENTINO, TRE 774 SCENIC HEIGHTS DR SE SALEM OR 97306
083W23CA15400 CINDY L CALLIGAN 6759 HUNTINGTON CR SE SALEM OR 97306	083W23CA15500 BECKMAN FAM TR JOAN E BECKMAN, TRE 6765 HUNTINGTON CR SE SALEM OR 97306	083W23CA15600 V L BENDER PO BOX 3551 SALEM OR 97302
083W23CA15700 GERALDINE M BOWER 6791 HUNTINGTON CR SE SALEM OR 97306	083W23CA15800 SHELLEE A LOWERY 1623 LEEWOOD AV NE KEIZER OR 97303	083W23CA15900 CHARLES E & MARCELLA G REYNOLDS 6797 HUNTINGTON CIR SE SALEM OR 97306
083W23CA16000	083W23CA16100	083W23CA16200
JOANNA LYNN PEARL	MARGARET DUNN HILL RLT	SHARON K BOLDT RLT
6799 HUNTINGTON CIR SE	6770 HUNTINGTON CR SE	6774 HUNTINGTON CR SE
SALEM OR 97306	SALEM OR 97306	SALEM OR 97306
083W23CA16300	083W23CA16400	083W23CA16500
PHYLLIS G HANN RLT	BOBBI H KUREK	COLLEEN J MOHR
6780 HUNTINGTON CR SE	6784 HUNTINGTON CIRCLE SE	6790 HUNTINGTON CR SE
SALEM OR 97306	SALEM OR 97306	SALEM OR 97306
083W23CA16600	083W23CB00100	083W23CB00200
MARY M & CRAIG S SPILLMAN	JON M & THERESA K PETERSON	WILLIAM C RAND
6794 HUNTINGTON CIR SE	6498 DORAL DR SE	PO BOX 490
SALEM OR 97306	SALEM OR 97306	SILVERTON OR 97381
083W23CB00300	083W23CB00400	083W23CB00500
CITY OF SALEM	JAMES SCOTT WOOLSEY	CARLOS N BROULLON RLT
555 LIBERTY ST RM NO 230	6546 DORAL DR SE	522 BOULEVARD WY
SALEM OR 97301	SALEM OR 97306	PIEDMONT CA 94610
083W23CB00600	083W23CB00700	083W23CB00800
PATRICIA A DUNLAP	DONALD E BUCKENDORF	LYNN L BAXTER
6566 DORAL DR SE	6576 DORAL DR SE	6586 DORAL DR SE
SALEM OR 97306	SALEM OR 97306	SALEM OR 97306

Attachment E

Geomorphic Analysis Memorandum

Technical Memorandum

10230 NE Points Drive Suite 400 Kirkland, WA 98033 Phone (425) 822 4446 Fax (425) 827-9577

То:	Allen Dannen, City of Salem Tim Kraft, Otak
From:	Nicholas Allmendinger, PhD P.G.
Copies:	Ryan Billen; Gary Wolff
Date:	May 9, 2011
Subject:	Geomorphic Reconnaissance for Waln Creek
Project No.:	13853B

I. Executive Summary

A geomorphic site reconnaissance was conducted on November 18, 2010 at the Battle Creek Property to assess the geomorphic constraints for channel improvements on the reach of Waln Creek between Madras Street SE and its confluence with Battle Creek. This reconnaissance included preliminary measurements of flow velocity, channel morphology, bank characteristics, and stability indicators. Flow velocity in the channel was approximately 1.6 fps with a reach-averaged discharge of 12 cfs. The channel has an average sinuosity of 1.05 over a length of roughly 1,230 feet. The average depth of flow estimated from two cross-sections was 2.5 feet and the average water surface width was 8.3 feet, creating an average wetted area of 21 square feet. The channel banks are relatively high and steep with an average side slope of 1:1.8. Roughness associated with the channel is due largely to the effects of vegetation on the banks which gives the channel a reach-averaged manning's n value of 0.045. Waln Creek is currently in a fairly stable condition as a result of its protected banks, and lack of woody vegetation within the channel. The upstream half of the channel is in channel evolution stage II (degradation) and the downstream reach is in evolution stage V (aggradation). The change in evolutionary stage may be the result of backwater effects from Waln Creeks confluence with Battle Creek.

Provided that the width and depth of the effective discharge are not changed significantly, and the gradient of the channel increases to become slightly greater than the minimum energy surface slope, it will be possible to increase the sinuosity of the channel of Waln Creek to approximately 1.2. It is likely that these objectives can be accomplished by lengthening and realigning the lower half of Waln Creek and establishing a new confluence with Battle Creek approximately 250 feet further downstream (southeast) from the existing one.

Conditions to avoid during construction would include exacerbation of incision in the downstream reach, inadequate or excessive bank armoring, replacement of bank sediment with less cohesive material, establishing an energy slope that is higher or dramatically lower than the bed gradient, exacerbating flooding issues by adding too much sinuosity, and relying heavily on empirical equations for alluvial channel design.

2. Reconnaissance Methods

2.1. Flow Conditions

Current velocity was approximated using the float method. The velocity of wood debris floating on the surface was measured using a digital stop watch and a portable "pocket" stadia rod. The velocities from ten trials were averaged and the mean value was multiplied by a velocity adjustment coefficient related to channel roughness to determine the mean velocity for each cross-section (Harrelson, et al., 1994).

2.2. Channel Morphology

The project reach was divided into two sub-reaches based on the presence and absence of a low vegetated bench. These benches are absent in the upper segment (615 feet) of the project reach and present in the lower segment (575 feet). The two segments are separated by a pedestrian bridge that is located at 44.8638°N and 123.0236°W (NAD27). Preliminary channel planform analysis was conducted using open source air photo and map resources including Google earth and USGS Stream Stats.

Channel dimensions were measured in two locations. The upstream cross-section (XS01) was measured near the upstream end of the reach near the proposed location for the new bridge, and the downstream cross-section (XS02) was measured approximately 500 feet upstream from the confluence with Battle Creek closer to the middle of the reach.

2.3. Channel Instability Assessment

A procedure to assess the potential for channel instability was used that includes observations of hydrology, hydraulics, geomorphic form and process, and riparian vegetation (Simon and Downs, 1995). This assessment was used to develop a list of alternative modifications that will (1) promote the restoration of riparian function by allowing the channel to recover more of its natural form and (2) manage the factors that generate instability. An "instability index" was used to rate two segments of the channel based on their potential for change. In this system, high scores have a high potential for changes that could undermine structures, erode banks, and scour or bury habitat (Thorne et al., 1996).

Results

3.1. Discharge and Velocity

On the day of our visit the water surface elevation was approximately at the top of the low benches in the downstream reach. The average surface velocity observed was 1.6 feet per second. This value has been adjusted for channel roughness using the methods described by Harrelson, et al. (1994). Using cross-sectional areas from typical cross-sections (see section 3.2) calculated discharges are 10 cfs for the upstream section and 14 cfs for the downstream section.

3.2. Channel Morphology

Based on aerial photographs from Google Earth, the upstream reach has a channel length of 612 feet and a straight line length of 607 feet. Dividing the channel length by the straight line distance, the sinuosity for this

Waln Creek Geomorphic Reconnaissance

segment is 1.01. The downstream reach has a channel length of 619 feet and a straight line length of 573 feet. Dividing the channel length by the straight line distance, the sinuosity for this segment is 1.08.

Parameters from both cross-sections are presented in table 1 and figure 2 in Appendix B. In general, crosssection 01 had steeper upper banks that were covered with denser herbaceous vegetation than cross-section 02. Cross-section 02 had a low bench along the left bank and a stand of dense willows growing on the right bank. Water depth and width are slightly greater in cross-section 2 resulting in a larger cross-sectional area of flow.

Table I. Geomorphic and H	vdraulic Data from Waln	Creek Cross-sections	(November 18, 2010)

Parameter	<u>XS01</u>	<u>XS02</u>	
Maximum Depth in feet (d)	2.5	2.8	
Mean Depth in feet (h)	2.1	2.9	
Water Surface Width in feet (Bw)	8	8.5	
Top Width in feet (W)	23	21.5	
Area of Flow in square feet (A)	17.1	24.4	
Left/Right Bank Angles (1:V)	1.3/1.6	1.5/2.8	
Left/Right roughness values (n)	0.035/0.035	0.030/0.100	
Cross-section Velocity in feet per second (U)	0.61	0.58	
Cross-section Discharge in cubic feet per second (Q)	10	14	

3.3. Channel Instability Assessment Results

Data collected for the channel instability assessment are presented in table 2. The upstream reach of Waln Creek has a total instability score (TIS) of 11.5/36 (32%) and the downstream reach has a total instability score of 12.5/36 (35%). The TIS for the downstream reach is slightly higher than the upstream reach because of its more advanced stage of channel evolution (stage V- aggradation as compared with stage III - degradation). The primary evidence for aggradation in the downstream reach is the presence of the low benches that may be the result of flooding due to a backwater effect from the confluence with Battle Creek. The TIS for both of these reaches are well below 36 (the maximum value) and even lie below the 50% level for the assessment implying that the reach does not have a high potential for channel instability.

As a guideline for channel design, the results found in table 2 suggest that improvements in channel stability could be made by lowering the scores for bed material, bed protection, stage of channel evolution, and percentage of woody cover. The bed material score can be improved by using the coarsest feasible grain size distribution. The bed protection score can be improved by adding grade control to the bed and removing as much bank protection as possible. The channel evolution stage score can be improved by designing a channel with morphology typical of the "restabilized" stage of channel evolution. This stage is characterized by stable, alternate channel bars, flattened bank angles, development of a new floodplain, and establishment of a flow line that is high relative to the top of the bank (Simon, 1989). The percentage of woody vegetative cover score can be improved by increasing the woody canopy cover in the riparian zone.

Waln Creek Geomorphic Reconnaissance

Parameter	Upstream Reach	Downstream Reach	
Bed Material (0-4)	Unknown (3.5)	Unknown (3.5)	
Bed Protection (0-3)	No, 2 banks protected (3)	No, 2 banks protected (3)	
Stage of Channel Evolution (0-4)	III Degradation (2)	Aggradation (3)	
Percentage of Channel Constriction (0-4)	0-5 (0)	0-5 (0)	
Number of Piers in Channel (0-2)	0 (0)	0 (0)	
% Blockage: horizontal, vertical, total (0-4)	0-4 (0),0-4 (0),0-4 (0); (Σ/3)	0-4 (0),0-4 (0),0-4 (0); (Σ/3)	
Bank Erosion for Each Bank (0-2)	None (0)	None (0)	
Meander Impact Point from Bridge (m) (0-3_	N/A (0)	N/A (0)	
Pier Skew for Each Pier (sum for all piers (0-1)	N/A (0)	N/A (0)	
Mass Wasting at Pier (calculated per pier) (0-3)	N/A (0)	N/A (0)	
High-flow Angle of Approach (o) (0-3)	N/A (0)	N/A (0)	
Percentage of Woody vegetative Cover (0-3)	0-15 (3)	0-15 (3)	
Total Instability Score (out of 36):	11.5 (32%)	12.5 (35%)	

Table 2. Channel Instability Assessment Results

3.3.1. Bed material

The highest scores (and most critical values) in the channel instability index are assigned to the finest sediment. Because point counts were not conducted on the bed during the field visit, a value of 3 to 5 was assigned for this parameter (category 5 is "unknown alluvium"). This range of values is likely to be appropriate and can be supported by two independent observations. First, when the bed was disturbed on the day of our visit the water instantly became extremely turbid which suggests that a large amount of fines are present on the bed. Second, when depth measurements were made, the base of the rod did not come into contact with any large grains of gravel, suggesting that the solid surface of the stream was fine gravel or smaller.

3.3.2. Bed Protection

The highest scores are assigned to channels with bed protection and with some form of armoring on both banks. In this reach of Waln Creek there was no visible evidence of sudden changes in bed elevation that would indicate the presence of bed controls such as weirs, large rocks, or woody debris in the bed. The banks throughout this reach were covered by herbaceous vegetation consisting of reed canary grass and Himalayan blackberry, and shrubby vegetation that included young willows.

3.3.3. Stage of Channel Evolution

The lowest score for this parameter is assigned to the natural condition or "pre-modified stage". The highest score is assigned to the threshold condition between the "degradation stage" in which the channel is still responding to upstream changes by incising and scouring its banks, and the "aggradation stage" in which a slightly over-incised channel begins to deposit sediment to attain a stable morphology. Because the banks in the upstream segment of the Waln Creek reach are so high and steep, and there are no low benches present which signify deposition, this segment is likely to be in the degradation stage. The downstream reach has high steep banks, but low benches are present in the cross-section, making it more likely to be in the aggradation stage.

Waln Creek Geomorphic Reconnaissance

3.3.4. Percentage of Woody Vegetative Cover

The lowest score for this parameter is for channels with forested floodplains and canopies that cover 100% of their surface area. The proposed project reach of Waln Creek has less than 16% woody vegetative cover, and therefore falls into the highest category for this parameter.

4. Design Recommendations

4.1. Channel Dimensions

The design width for the effective discharge (which corresponds roughly to the 0.33 year flow event) should remain at between 8 and 8.5 feet. In order to minimize the energy slope of the water surface as well as to maintain Froude numbers below critical values during low magnitude high frequency flow events, the corresponding depth should vary between 1.5 feet in shallow areas (i.e. riffles) to no more than 3.5 feet in pools. To simulate a natural alluvial channel, these should be incorporated into the design at intervals of roughly 5 to 7 channel widths so that each pool would be approximately 40 to 60 feet downstream from the previous one and separated from it by a riffle. The bed slope for this channel could be anywhere between 0.004 and 0.005, however lower Froude numbers and improved sediment continuity will be achieved by keeping the slope closer to the low end of this range.

4.2. Channel Sinuosity

Floodplain soils in this area are mapped by the USDA as Waldo silty clay loam (27 to 40% clay; 40 to 72% silt). These soils are typical of alluvial floodplains with slopes of 0 to 3%, and are classified as poorly drained. A typical profile for these soils includes an upper unit of approximately 10 inches of silty clay loam above 10 to 60 inches of predominantly clay soil. Silt:clay ratios in silty clay loams can range between 1.1 and 2.7 with an average value of 1.8. One empirical study in the Great Plains related channel sinuosity to the silt:clay ratio of bank sediments using the relationship in equation 1 (Schumm, 1963). The average value of si:cl for silty clay loams yields a value of 1.08 for sinuosity which corresponds well to the value measured for the downstream reach of Waln Creek.

 $s = 0.94 \text{ x} (si/cl)^{0.25}$

where s is the sinuosity of the channel si is the silt content of the bank sediment cl is the clay content of the bank sediment

4.3 Channel Gradient

Because the energy that drives the flow comes predominantly from the valley gradient (Sv) it is derived from historical processes. The valley gradient is imposed upon the channel and the river must adjust to using the water and sediment supplied from upstream (Huang et al., 2004). The current alignment of Waln Creek causes it to flow directly down its valley and the valley is providing energy that can be described by equation 2.

$\Omega v = \gamma Q S v$

where Ωv is the power derived from the valley

equation 2

equation 1

Page 5 *May 9, 2011*

Waln Creek Geomorphic Reconnaissance

Page 6 *May 9, 2011*

 $\begin{array}{l} \gamma \text{ is the specific weight of water} \\ Q \text{ is the flow discharge} \\ \text{Sv is the valley gradient} \end{array}$

The valley gradient in the project area is very low (0.003) and is likely to be approximately equal to the minimum energy surface slope for Waln Creek. In order to enhance the streams ability to convey water and sediment, the designed channel should be lengthened as much as possible so that it joins Battle Creek at a point further downstream along Battle Creek's course. The new confluence location can be chosen so that the total elevation drop will out-balance the increase in channel length, and the overall gradient will actually increase. These changes are likely to increase the bed gradient by as much as 0.002 so it will be slightly greater than the minimum energy surface slope.

5. Conditions to Avoid

5.1. Renewed Incision

The downstream reach may be in the aggradation stage of channel evolution as a result of flooding caused by backwater effects from the confluence with Battle Creek. If this is the case, alleviating the flooding may result in continued incision, and merely bring the channel back to stage III or even IV.

5.2. Inadequate or Excessive Bank Armoring

If the vegetation were to be removed from the banks, the bank erosion for each bank is likely to increase, and would be fluvial in nature. That would raise the score (section 3.3.4) for either reach by 1. It will be important to balance the increased channel sinuosity with sufficient roughness along the scour points to prevent the channel from actively meandering. Excessive armoring of the banks may actually induce further incision, so the appropriate roughness value will be important to establish, as will grade control.

5.3. Altering Bank Sediment

It can be inferred from this relationship that the sinuosity of the channel would be higher if the relative amount of clay in the channel perimeter were lower. This is probably an oversimplification from the perspective of the channel designer. If the entire perimeter were removed and replaced with sediment that had higher silt content, the result would be more erodible banks which would result in higher sinuosity. This is not the ideal way to attain a higher degree of sinuosity.

5.4. Higher Energy Slope than Bed Gradient

The minimum amount of energy required for transporting the imposed water load (Q) and sediment load (Qs) without causing erosion and deposition is represented by the minimum energy slope (Sf_{min}). If the minimum energy slope in the Waln Creek reach is significantly greater than the valley slope, there will not be sufficient energy to transport the sediment supplied, and the system will not achieve equilibrium. Excessive deposition and bed aggradation are likely to occur in this case and the channel may become braided or develop a laterally migrating meandering planform. Equilibrium in this case could only be achieved through increasing the stream power by increasing flow discharge or channel gradient or by reducing the sediment load.

Waln Creek Geomorphic Reconnaissance

Page 7 *May 9, 2011*

5.5. Excessive Sinuosity

Channel planform is a constituent of total flow resistance. Straight channels provide very little planform resistance and highly sinuous channels provide a great deal of resistance. Because each bend in the river is an obstacle for flow, intense excessive sinuosity may exacerbate flooding conditions in the downstream reach by reducing water velocities even further.

5.6. Use of Empirical Equations

Waln Creek is an urban stream and shows evidence of the impacts of this land use throughout the project reach. This evidence includes water and sediment blockages such as channel incision near the confluence with Battle Creek (photograph 2 in Appendix A) and the concrete weir on the north side of Madras Street SE (photograph 3 in Appendix A). Given its altered hydrology, it is unlikely that water in Waln Creek reaches the elevation of the most prominent "floodplain" feature (the golf course surface) with a 1.5- to 2-year frequency. It is also unlikely that the discharge observed on the day of our visit (water surface elevation reaching the top of the low bench) occurs with that frequency. It is more likely that the observed stage (which is tempting to call "bankfull") occurs multiple times in any one year.

Further, the banks of Waln Creek are lined with dense vegetation which limits the ability of the channel to erode its banks which limits our ability to classify the channel as alluvial. The distinctions made here about the bankfull conditions and the non-alluvial nature of the channel are important ones because they restrict the applicability of empirical design relationships.

6. Preliminary Alternatives

<u>Alternative 0</u> does not alter the channel. Sinuosity, channel surface area, channel slope remain the same. No floodplain trees are removed.

<u>Alternative 1</u> involves abandoning the existing alignment approximately 50 feet downstream from the proposed bridge location and establishing a new confluence with Battle Creek approximately 250 feet east of the existing one. This option adds the most sinuosity and channel surface area, reduces slope by 0.0002, requires removal of 4 floodplain trees.

<u>Alternative 2</u> involves abandoning the existing alignment approximately 420 feet downstream from the proposed bridge location (downstream from the waypoint designated "Manhole 1" during the 11/18/2010 field visit) and establishing a new confluence with Battle Creek approximately 250 feet east of the existing one. This option increases sinuosity and channel surface area, but doesn't reduce the slope by as much (0.0001), requires removal of 8 floodplain trees.

<u>Alternative 3a</u> involves abandoning the existing alignment approximately 90 feet upstream from the current confluence with Battle Creek and establishing a new confluence approximately 75 feet to the east. This option increases sinuosity and channel surface area to a much smaller extent, but (somehow) increases slope by 0.0002 requires removal of 13 floodplain trees.

Waln Creek Geomorphic Reconnaissance

<u>Alternative 3b</u> involves maintaining the existing alignment and deflecting the thalweg to the southeast approximately 60 feet to the east. This option adds the least amount of sinuosity and channel surface area, reduces slope by 0.0004, requires removal of 13 floodplain trees.

Alternati	L _{th}	120			\triangle Sfc A		
ve	<u>(ft)</u>	L _v <u>(ft)</u>	<u>Sin</u>	Sfc A <u>(ft²)</u>	<u>(ft²)</u>	<u>S</u>	<u>∆ S</u>
0	940	911	1.03	7,990	-	0.0034	0
1	1285	1154	1.11	10,923	2,933	0.0032	-0.0002
2	1245	1154	1.08	10,583	2,593	0.0033	-0.0001
3a	1113	1036	1.07	9,461	1,471	0.0036	0.0002
3b	1049	984	1.07	8,917	927	0.0030	-0.0004

Table 3. Parameters Associated with 5 Preliminary Waln Creek Alternatives

Lth: Length of the thalweg; Lv: length of the valley; Sin: sinuosity; Sfc A: surface area of the channel; S: slope

Sketches of Preliminary Alternatives

Alternative 1

Alternative 2

Page 9 *May 9, 2011*

Alternative 3a

Alternative 3b

7. Conclusion

The preferred option for further design is Alternative 2. This alternative involves lengthening the channel by 305 feet increasing the sinuosity of the channel by 0.05, increasing the channel surface area by 2,593 square feet, reducing the slope by 0.0001, and establishing a new confluence with Battle Creek approximately 250 feet east of the existing one. This option is also likely to require the removal of 8 floodplain trees.

Waln Creek Geomorphic Reconnaissance

8. References

Google Earth. 2010. Waln Creek at Battle Creek Golf Course. Google, Inc. Mountain View California.

Harrelson, Cheryl C; Rawlins, C. L.; Potyondy, John P. 1994. Stream channel reference sites: an illustrated guide to field technique. Gen. Tech. Rep. RM-245. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Forest and Range Experiment Station. 61 p.

Huang, He Qing; Chang, Howard H.; and Nanson, Gerald C. 2004. Minimum energy as the general form of critical flow and maximum flow efficiency and for explaining variations in river channel pattern. Water Resources Research, 40.

Natural Resources Conservation Service, U.S. Department of Agriculture. 2010. Web Soil Survey. Available online at <u>http://websoilsurvey.nrcs.usda.gov</u>. Accessed 11/25/2010.

Schumm, Stanley. A. 1963. Sinuosity of Alluvial Rivers on the Great Plains. Geological Society of America Bulletin 74: 1089-1100

Simon, Andrew., and Downs, Peter. W. 1995. An Interdisciplinary approach to evaluation of potnetial instability in alluvial channels. Geomorphology, 12: 215-232.

Thorne, Colin R., Allen, Robert G., and Simon, Andrew, 1996. Geomorphological River Channel Reconnaissance for River Analysis. Transactions of the Institute of British Geographers, 21 (3): 469-483.

U.S. Geological Survey. 2010. StreamStats for the Waln Creek watershed near Salem, OR. Available online at http://water.usgs.gov/osw/streamstats/index.html. Accessed 11/25/2010.

Page 11 *May 9, 2011*

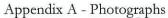


Figure 1. Cross-section photographs. Left: view of upstream cross-section (XS- 01) looking downstream (top), from right bank looking across the channel (middle) and from left bank looking across the channel (bottom). Right: view of downstream cross-section (XS- 02) looking upstream (top), from left bank looking downstream at left bank (middle) and from left bank looking upstream at right bank (bottom).

Page 12 *May 9, 2011*

Figure 2. Bank scour and trees established well below ordinary high water mark (evidence of channel incision) along the right bank near the downstream end of Waln Creek.

Figure 3. A weir upstream from Madras Road and the project area on Waln Creek. This structure limits the ranges of flows in the project reach as well as the influx of sediment.

Page 13 *May 9, 2011*

Appendix B

(a)

(b)

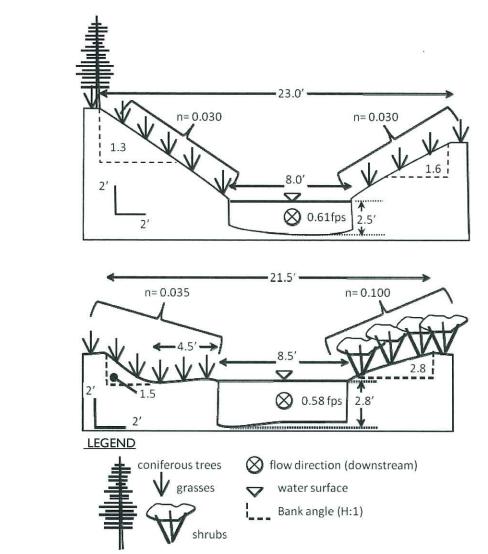
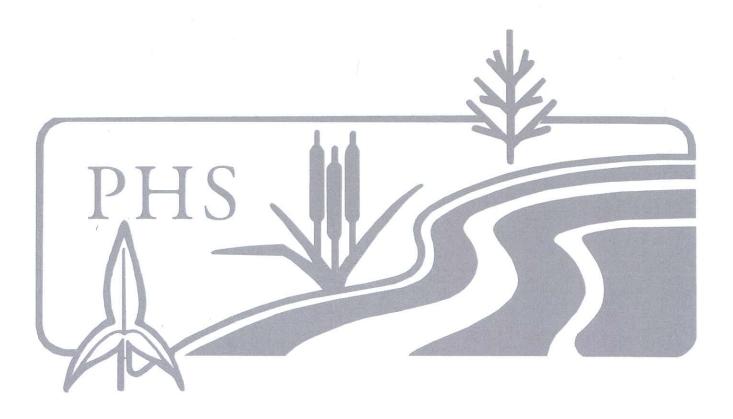



Figure 2. Geomorphic Cross-sections with dimensions, (a) the upstream cross-section (XS01) looking downstream, and (b) the downstream cross-section (XS02) looking downstream.

Attachment F

DSL Wetland Delineation Approvals

June 24, 2008

Department of State Lands 775 Summer Street NE, Suite 100 Salem, OR 97301-1279 (503) 986-5200 FAX (503) 378-4844 www.oregonstatelands.us.

State Land Board

Theodore R. Kulongoski Governor

> Bill Bradbury Secretary of State

Randall Edwards State Treasurer

Terry Kelly and Mary Rentfro Battle Creek Golf Course 4676 Commercial Street SE PMB #261 Salem, OR 97302

Re: Wetland Delineation Report for Salem, Marion County, T8S R3W Sec. 23, Sec. 23A, Tax Lots 900, 1000, 1100; Sec. 23B, Tax Lots 100, 101, 200, 300, 400; Sec. 23BA, Tax Lot 400; WD #08-0034, Salem/Keizer Local Wetlands Inventory wetland BC-F

Dear Mr. Kelly and Ms. Rentfro:

The Department of State Lands has reviewed the wetland delineation report prepared by Applied Technology Wetlands and Forestry Consultants for the site referenced above. Based upon the information presented in the report, a site visit on May 8, 2008 and additional information submitted upon request, we concur with the wetland and waterway boundaries as mapped in revised Figure 6A – 6E of the report. Please replace all copies of the preliminary wetland map with this final Department-approved map. Within the study area, seven wetlands (totaling approximately 1.55 acres) and five waterways (Battle Creek, Powell Creek, Waln Creek, Scotch Creek and "box culvert") were identified. The wetlands and waterways are subject to the permit requirements of the state Removal-Fill Law. A state permit is required for cumulative fill or annual excavation of 50 cubic yards or more in the wetlands or below the ordinary high water line (OHWL) of a waterway (or the 2 year recurrence interval flood elevation if OHWL cannot be determined). Wetland Aa is not subject to the permit requirements of the state Removal-Fill Law under OAR 141-085-0015(7).

This concurrence is for purposes of the state Removal-Fill Law only. Federal or local permit requirements may apply as well. The Army Corps of Engineers will review the report and make a determination of jurisdiction for purposes of the Clean Water Act at the time that a permit application is submitted. We recommend that you attach a copy of this concurrence letter to both copies of any subsequent joint permit application to speed application review.

Please be advised that state law establishes a preference for avoidance of wetland impacts. Because measures to avoid and minimize wetland impacts may include reconfiguring parcel layout and size or development design, we recommend that you work with Department staff on appropriate site design before completing the city or county land use approval process.

G:\WWC\Wetlands Program\WD Letters\2008\08-0034.doc

3

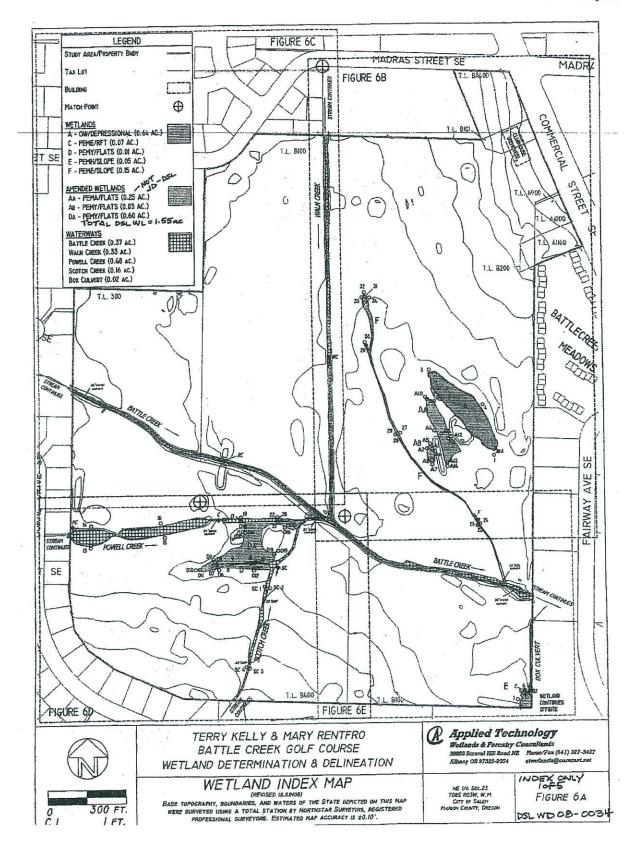
This concurrence is based on information provided to the agency. The jurisdictional determination is valid for five years from the date of this letter, unless new information necessitates a revision. Circumstances under which the Department may change a determination and procedures for renewal of an expired determination are found in OAR 141-090-0045 (available on our web site or upon request). The applicant, landowner, or agent may submit a request for reconsideration of this determination in writing within 60 calendar days of the date of this letter.

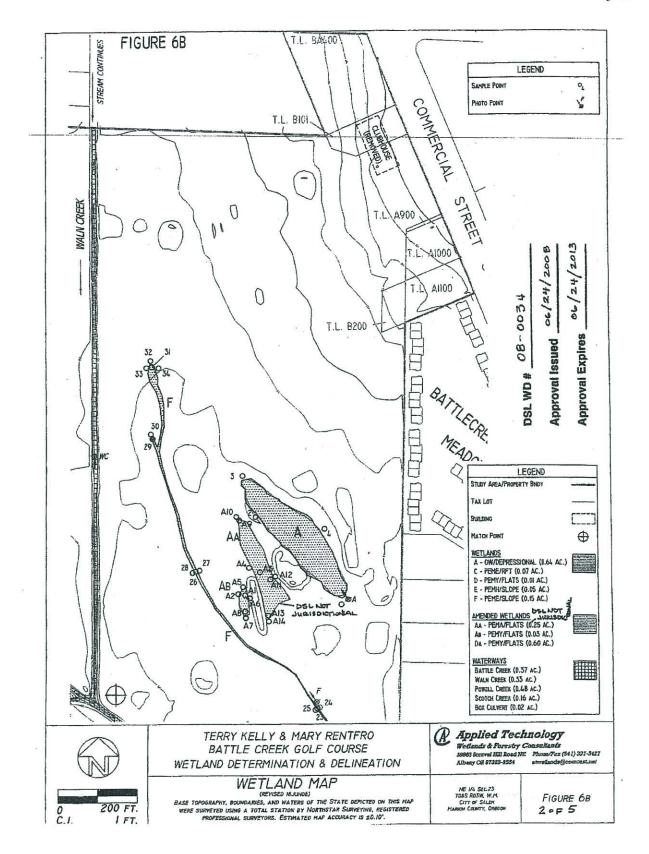
Thank you for having the site evaluated. Please phone me at 503-986-5297 if you have any questions.

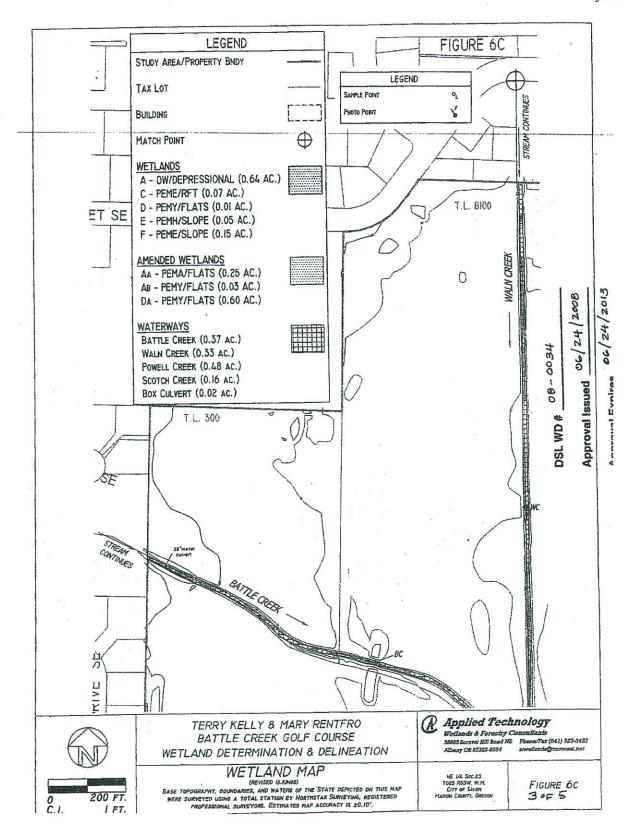
Sincerely,

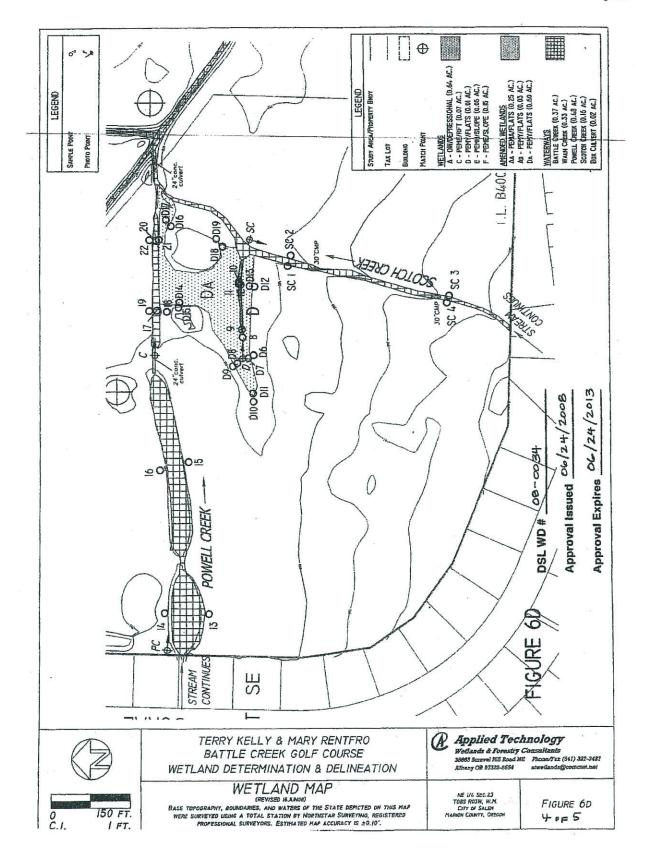
Jevra Brown Wetland Specialist

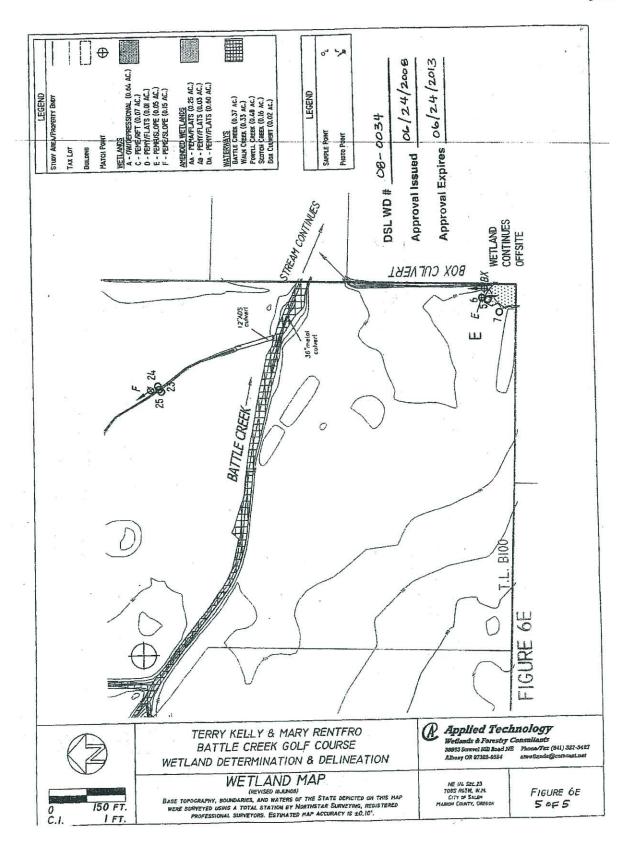
Approved by Sand Janet C. Morlan, PWS

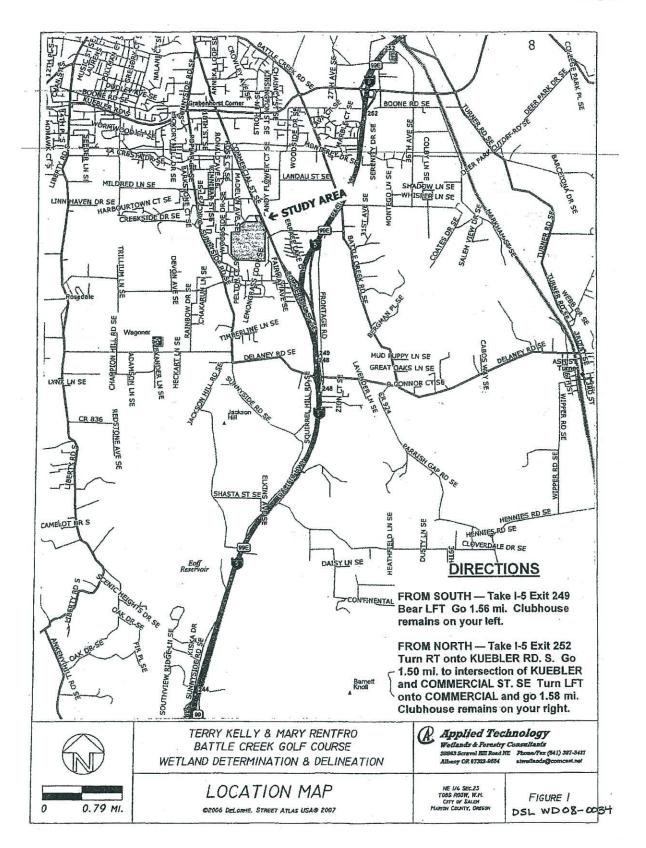

Wetlands Program Manager


Enclosures


cc: Tim Acker, Applied Technology Wetlands and Forestry Consultants City of Salem Planning Department (Maps enclosed for updating LWI) James Holm, Corps of Engineers Portland office Shannen Chapman, DSL


2 2 2


G:\WWC\Wetlands Program\WD Letters\2008\08-0034.doc



July 6, 2011

City of Salem, Public Works Department Attn: Allen Dannen 555 Liberty Street SE, Room 325 Salem, Oregon 97301

Re: Wetland Delineation Report for Salem, Marion County, T8S R3W Sec. 23, Sec. 23A, Tax Lots 900, 1000, 1100; Sec. 23B, Tax Lots 100, 101, 200, 300, 400; Sec. 23BA, Tax Lot 400; WD #08-0034 Addendum, Salem/Keizer Local Wetlands Inventory wetland BC-F

Dear Mr. Dannen:

The Department of State Lands has reviewed the wetland delineation report Addendum prepared by Pacific Habitat Services and partially revising the earlier report prepared by Applied Technology Wetlands and Forestry Consultants for the site referenced above. Based upon the information presented in the May 23, 2011 report addendum, and additional information submitted in a July 1, 2011 memorandum, we concur with the wetland and waterway boundaries as mapped in revised Figure A of the memorandum. Please replace all copies of the previously approved wetland map with this revised Department-approved map. Within the study area, seven wetlands (totaling approximately 3.48 acres) and five waterways (Battle Creek, Powell Creek, Waln Creek, Scotch Creek and "box culvert") were identified. The wetlands and waterways are subject to the permit requirements of the state Removal-Fill Law. A state permit is required for cumulative fill or annual excavation of 50 cubic yards or more in the wetlands or below the ordinary high water line (OHWL) of a waterway (or the 2 year recurrence interval flood elevation if OHWL cannot be determined). Wetland AA is not subject to the permit requirements of the state Removal-Fill Law under OAR 141-085-0015(7).

This concurrence is for purposes of the state Removal-Fill Law only. Federal or local permit requirements may apply as well. The Army Corps of Engineers will review the report and make a determination of jurisdiction for purposes of the Clean Water Act at the time that a permit application is submitted. We recommend that you attach a copy of this concurrence letter to both copies of any subsequent joint permit application to speed application review.

Please be advised that state law establishes a preference for avoidance of wetland impacts. Because measures to avoid and minimize wetland impacts may

Department of State Lands 775 Summer Street NE, Suite 100 Salem, OR 97301-1279 (503) 986-5200 FAX (503) 378-4844 www.oregonstatelands.us

State Land Board

John A. Kitzhaber, MD Governor

> Kate Brown Secretary of State

> > Ted Wheeler State Treasurer

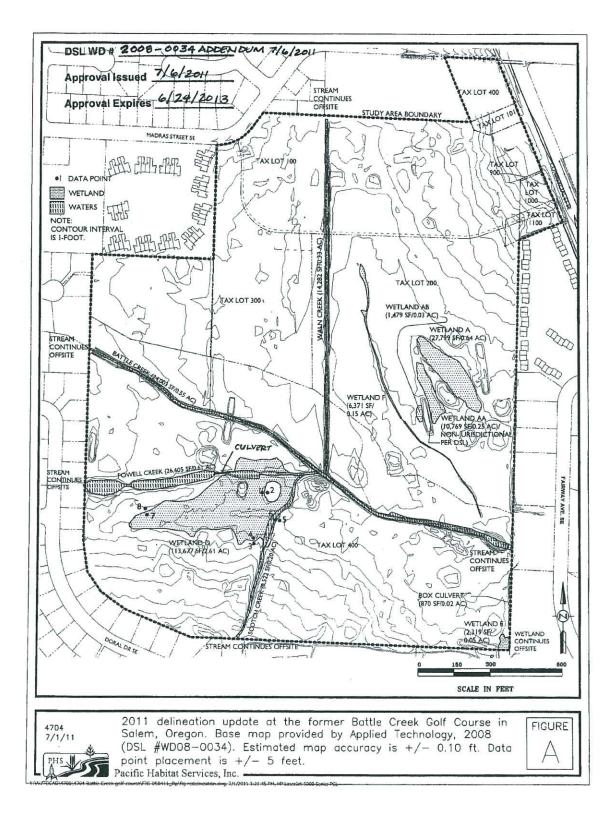
include reconfiguring parcel layout and size or development design, we recommend that you work with Department staff on appropriate site design before completing the city or county land use approval process.

This concurrence is based on information provided to the agency. The jurisdictional determination is valid for five years from the date of the original approval, until June 24, 2013, unless new information necessitates a revision. Circumstances under which the Department may change a determination and procedures for renewal of an expired determination are found in OAR 141-090-0045 (available on our web site or upon request). The applicant, landowner, or agent may submit a request for reconsideration of this determination in writing within 60 calendar days of the date of this letter.

Thank you for having the site evaluated. Please phone me at 503-986-5297 if you have any questions.

Sincerely,

Jevra Brown


Wetland Specialist

a Buchlei Approved by Anna Buckley

Acting Wetlands Program Manager

Enclosures

cc: Shawn Eisner, Pacific Habitat Services City of Salem Planning Department (Maps enclosed for updating LWI) Karla Ellis, Corps of Engineers Portland office Dan Cary, DSL

Attachment G

Stream Mitigation Process Worksheets

MITIGATION SITE - CREDIT CALCULATION WORKSHEET

The Salem, Oregon Stream Mitigation Process is a rapid assessment methodology that quantifies impacts to streams and riparian areas and determines an appropriate level of mitigation. The process requires knowledge of stream and riparian conditions to complete four tables (2 for debit calculations and 2 for credit calculations). This worksheet is protected - no password is required to unprotect.

Project Name:	Waln Creek Enhancement and Battle Creek Culvert Removal Project	Date:	08/01/13
Mitigation Stream Name:	Battle Creek	Reach #:	1
Location:	Salem, Oregon	Evaluator(s):	CET

This section calculates the amount of credit achieved as a result of proposed instream mitigation activities.

		Table C -1A: Instrea	am Credits								
	Factors										
Stream Type (A)	Ephemeral	Intermittent	Perennial	Α	0.7						
(4)	0.2	0.5	0.7	Ŷ	0.7						
	Ephemeral streams flow only in direct response to precipitation. Water typically flows only during and shortly after large precipitation events. Ephemeral streams may or may not have a well-defined channel, the stream bed is always above the water table, and stormwater runoff is the primary source of water. Ephemeral streams typically lack the biological, hydrological, and physical characteristics commonly associated with the continuous or intermittent conveyance of water.	Intermittent streams contain water for only part of the year, typically during the winter and spring when the stream bed may be below the water table and/or when snowmelt from surrounding uplands provides sustained flow. The channels may or may not be well defined. The flows may vary greatly with stormwater runoff. Intermittent streams may lack the biological and hydrological characteristics commonly associated with the continuous conveyance of water.	Perennial streams contain water continuously during a year of normal rainfall, often with the stream bed located below the water table for most of the year. Groundwater supplies the baseflow for perennial streams, but flow is also supplemented by stormwater runoff and snowmelt. Perennial stream exhibit the typical biological, hydrological, and physical characteristics commonly associated with the continuous								
Stream Status	Tertiary	Secondary	Primary	в	0.4						
(B)	0.1	0.4	0.8	В	0.4						
	Tertiary Waters are streams that are documented as non-game-fish-bearing.	Secondary Waters are game-fish-bearing streams that do not meet the criteria for Primary Waters.	Primary Waters are streams designated as Essential Salmonid Habitat; Critical Habitat; streams supporting state-listed or federally listed threatened, endangered or special concern species; and streams within federal or state protected areas.								

Table C-1B - Instream	Net Impro	ven	nent Fa	ctor	s			
			Improvem width		Linear Feet of Specific Improvement	Improvement Weight	Improvement Value	Net Improvement Factor
Bankfull Width C 25		·						
Instream Net Improvement Fa	actors - Ab	ove	e Bankf	iull E	levation			
Laying back bank above bankfull elevation (Right Side): [Improvement weight = 0.21*(D/C)]	D					0.21*(D/C)		
Laying back bank above bankfull elevation (Left Side): [Improvement weight =0.21*(E/C)]	E					0.21*(E/C)		
Instream Net Improvement Fact	ors - At or	Bel	low Bar	nkfu	II Elevation			
Bioengineering below bankfull elevation (Left Side) where not part of any other improvement:				F		0.34		
Bioengineering below bankfull elevation (Right Side) where not part of any other improvement:				G		0.34		
Changing straightened channel to an appropriate conformation				Н		1.34		
Adding habitat structures (including large wood):				I.		0.15		
Removal of bank armoring below bankfull elevation (Right Side) (must be stabilized with bioengine	ering)			J		0.34		
Removal of bank armoring below bankfull elevation (Left Side) (must be stabilized with bioengineer	ring)			к		0.34		
Replacing undersized culvert with fish-passable culvert or bridge:				L	101	0.80	0.80	80.80
Installing fish ladders (If "yes", enter "Y", if "no" leave blank)			о	м		0.80		
Removing man-made structures that impound streams:				Ν		1.34		
Increasing culvert size or adding culverts to increase floodplain connectivity (If "yes", enter "Y", if ' blank):	"no" leave			0		0.05		
Bench creation at bankfull elevation (Left Side): [Improvement weight =0.76*(P/C)]	Р					0.76*(P/C)		
Bench creation at bankfull elevation (Right Side): [Improvement weight =0.76*(Q/C)]	Q					0.76*(Q/C)		
Laying back bank below bankfull elevation (Left Side): [Improvement weight =0.33*(R/C)]	R		11.50		105	0.33*(R/C)	0.15	0.00
Laying back bank below bankfull elevation (Right Side): [Improvement weight =0.33*(S/C)]	S		12.50		105	0.33*(S/C)	0.17	0.00
Average above bankfull elevation: Net Improvement=Sum of above bankfull Net Improveme	ent Factors/Sur	n of a	above ban	kfull li	inear feet of spec	ific improvements	з Т	
Average below bankfull elevation: Net Improvement=Sum of below bankfull Net Improvement	ent Factors/Su	n of I	below ban	nkfull I	inear feet of spec	ific improvement	s U	0.80
Above Bankfull Elevation Credits=Average above bankfull Net Imp	s V							
Below Bankfull Elevation Credits=Average below bankfull Net Im	s W	135.34						
Total Instream Credits	s = Above bank	full e	elevation o	credits	+ Below bankful	l elevation credits	x	135.34

Mitigation Site Assessment

Mitigation plans must be accompanied by data that supports the mitigation design.

CITY OF SALEM STREAM MITIGATION PROCESS - Page 2 MITIGATION SITE - CREDIT CALCULATION WORKSHEET

Project Name:	Waln Creek Enhancement and Battle Creek Culvert Removal Project	Date:	08/01/13
Mitigation Stream Name:	Battle Creek	Reach #:	1
Location:	Salem, Oregon	Evaluator(s):	CET

This section determines how much credit is gained from enhancing a riparian area in low or medium value condition. There is no limit to the length of the enhancement area, but credit given only within 50 feet of the stream (as measured perpendicular from the ordinary high water).

		Т	able	e C-2A: I	Riparia	an Veg	getatio	on Net	Improver	nent F	actors	withir	n 50 fe	et of Ed	dge of St	tream	1				
1. Pro	Provide the length of the riparian area that will be enhanced along each bank.																				
2. Es	Estimate the area (in square feet) of each existing plant community type (i.e. low or medium) to be enhanced.																				
1. Length of riparian area to be enhanced (not more than a 50 feet wide) 2. Area (in square feet) of each type of existing plant stratum				3. Area (in square feet) of each type of enhancement Plant CommunityNet Improveme				ement F	actors												
	Left	Right		Functional Value	Left Bank Herbaceous/ Low Shrub	Left Bank Tree Canopy/Tall Shrub	Right Bank Herbaceous/ Low Shrub	Right Bank Tree Canopy/Tall Shrub	Improvement Action	Left Bank Herbaceous/ Low Shrub	Left Bank Tree Canopy/Tall Shrub	Right Bank Herbaceous/ Low Shrub	Right Bank Tree Canopy/Tall Shrub	Weight	Left Bank Herbaceous/ Low Shrub	Left Bank Tree	Canopy/Tall Shrub	Right Bank Herbaceous/	Low Shrub	Right Bank Tree Canopv/Tall	Shrub
¥1		Y2		Low					Low to High					0.54							
	Medium Medium to High 0.27		0.27																		
	High Image: Constraint of the second se						¥4		Y5		Y6										

Average Stream Flow Direction across mitigation site in degrees east of north*

*Measured every 100 feet along riparian enhancement Area

	Table C-2B	Additional Riparian Mitigation Factors			an Mitigation a Scores			
Stream	Ephemeral	Intermittent	Perennial	_				
Type (Z)	0.2	0.5	0.7	z	0.70			
	Ephemeral streams flow only in direct response to precipitation. Wate typically flows only during and shortly after large precipitation events. Ephemeral streams may or may not have a well-defined channel, the stream bed is always above the watter table, and stormwater runoff is the primary source of water. Ephemeral streams typically lack the the biological, hydrological, and physical characteristics commonly associated with the continuous or intermittent conveyance of water.	Intermittent streams contain water for only part of the year, typically during the winte and spring when the stream bed may be below the water table and/or when snowme from surrounding uplands provides sustained flow. The channels may or may not be well-defined. The flows may vary greatly with stormwater runoff. Intermittent streams may lack the biological and hydrological characteristics commonly associated with th continuous conveyance of water.	t most of the year. Groundwater supplies the baseflow for perennial streams, but flow is also supplemented by stormwater runoff and					
Stream Status	Tertiary	Secondary	Primary	ΔΔ	0.40			
(AA)	0.1	0.4	0.8	AA	0.40			
	Tertiary Waters are streams that are documented as non-game-fish- bearing.	Secondary Waters are game-fish-bearing streams that do not meet the criteria for Primary Waters.	Primary Waters are streams designated as Essential Salmonid Habitat; Critical Habitat; streams supporting state-listed or federally listed threatened, endangered or special concern species; and streams within federal o state protected areas.					
		Left Riparian Cr	edit (BB) =Y1*(Y3+Y4+(0.2*Z)+(0.34*AA))	BB				
Right Riparian Credit (CC) =Y2*(Y5+Y6+(0.2*Z)+(0.34*AA))								
			Total Riparian Credits (DD) = BB+CC	DD				

CREDIT CALCULATION PROJECT SUMMARY AND SCORES

Project Name:	Wal	n Creek	Enhand	ement	and Ba	ttle Cre	ek Culvert Rem	oval Pr	oject		Date:		08/01/13	5
Mitigation Stream Name:					Battle	Creek					Reach #:		1	
Location:		Salem, Oregon									luator(s):		CET	
				Та	ble C-	3A: Pro	ject Summary	,						
	INSTREAM NET IMPROVEMENT FACTORS - ABOVE BANKFULL STAGE													
Laying back bank:	Right Side		Left Side											
INSTREAM NET IMPROVEMENT FACTORS - AT OR BELOW BANKFULL STAGE														
Bioengineering:	Left Side		Right Side				ng straightened ch appropriate confo			Adding habitat structures				
Removal of bank armoring:	Right Side		Left Side				ing undersized cul -passable culver o			Removin		or adding h ladders		
Removing man-made debris b	elow or	linary hig	gh water:				Increasing culvert	size or a	dding cu	verts to ir		loodplain nectivity:		
Bench Creation:	Left Side		Right Side			I	aying back bank:	Right Side	105	Left Side	105			
Riparian area to be enhanced:									lerb/Low hrub		Right Tree/Tall Shrub			
					rb/Low ubs		Left Tree/Tall Shrub			erb/Low rub		Right T Sh	ree/Tall rub	

Total Instream Credits (from Table C-1B):	x	135
Total Riparian Credits (from Table C-2B):	DD	
Total Credits: Y+EE	EE	135

MITIGATION SITE - CREDIT CALCULATION WORKSHEET

The Salem, Oregon Stream Mitigation Process is a rapid assessment methodology that quantifies impacts to streams and riparian areas and determines an appropriate level of mitigation. The process requires knowledge of stream and riparian conditions to complete four tables (2 for debit calculations and 2 for credit calculations). This worksheet is protected - no password is required to unprotect.

Project Name:	Waln Creek Enhancement and Battle Creek Culvert Removal Project	Date:	08/01/13
Mitigation Stream Name:	Battle Creek	Reach #:	2
Location:	Salem, Oregon	Evaluator(s):	CET

This section calculates the amount of credit achieved as a result of proposed instream mitigation activities.

	Table C -1A: Instream Credits											
		Factors										
Stream Type (A)	Ephemeral	Α	0.7									
(1)	0.2	0.5	0.7		•							
	Ephemeral streams flow only in direct response to precipitation. Water typically flows only during and shortly after large precipitation events. Ephemeral streams may or may not have a well-defined channel, the stream bed is always above the water table, and stormwater runoff is the primary source of water. Ephemeral streams typically lack the biological, hydrological, and physical characteristics commonly associated with the continuous or intermittent conveyance of water.	Intermittent streams contain water for only part of the year, typically during the winter and spring when the stream bed may be below the water table and/or when snowmelt from surrounding uplands provides sustained flow. The channels may or may not be well defined. The flows may vary greatly with stormwater runoff. Intermittent streams may lack the biological and hydrological characteristics commonly associated with the continuous conveyance of water.	Perennial streams contain water continuously during a year of normal rainfall, often with the stream bed located below the water table for most of the year. Groundwater supplies the baseflow for perennial streams, but flow is also supplemented by stormwater runoff and snowmelt. Perennial stream exhibit the typical biological, hydrological, and physical characteristics commonly associated with the continuous									
Stream Status	Tertiary	Secondary	Primary	в	0.4							
(B)	0.1	0.4	0.8	5	0.4							
	Tertiary Waters are streams that are documented as non-game-fish-bearing.	Secondary Waters are game-fish-bearing streams that do not meet the criteria for Primary Waters.	Primary Waters are streams designated as Essential Salmonid Habitat; Critical Habitat; streams supporting state-listed or federally listed threatened, endangered or special concern species; and streams within federal or state protected areas.									

			Table C-1B - Instream Net Ir	nprov	ement	Factor	s			
						vement dth	Linear Feet of Specific Improvement	Improvement Weight	Improvement Value	Net Improvement Factor
Bankfull Width	С	25								
			Instream Net Improvement Factors	- Abo	ve Ban	nkfull B	Elevation			
Laying back bank above ba	nkfull el	levation (Right Sid	e): [Improvement weight = 0.21*(D/C)]	D				0.21*(D/C)		
Laying back bank above ba	nkfull el	levation (Left Side	: [Improvement weight =0.21*(E/C)]	E				0.21*(E/C)		
			Instream Net Improvement Factors - A	At or B	elow E	Bankfu	II Elevation			
Bioengineering below bank	full elev	ation (Left Side) w	here not part of any other improvement:			F		0.34		
Bioengineering below bank	full elev	ation (Right Side)	where not part of any other improvement:			G		0.34		
Changing straightened cha	nnel to a	an appropriate cor	formation			н		1.34		
Adding habitat structures (i	ncludin	g large wood):				I		0.15		
Removal of bank armoring	below b	ankfull elevation (Right Side) (must be stabilized with bioengineering)			J		0.34		
Removal of bank armoring	below b	ankfull elevation (eft Side) (must be stabilized with bioengineering)			к		0.34		
Replacing undersized culve	ert with f	ish-passable culv	ert or bridge:			L		0.80		
Installing fish ladders (If "ye	es", ente	er "Y",if "no" leave	blank)		0	м		0.80		
Removing man-made struct	tures that	at impound strean	s:			Ν		1.34		
Increasing culvert size or a blank):	dding cu	ulverts to increase	floodplain connectivity (If "yes", enter "Y", if "no" lear	/e		ο		0.05		
Bench creation at bankfull	elevatio	n (Left Side):	[Improvement weight =0.76*(P/C)]	Р				0.76*(P/C)		
Bench creation at bankfull	elevatio	n (Right Side):	[Improvement weight =0.76*(Q/C)]	Q				0.76*(Q/C)		
Laying back bank below ba	nkfull el	evation (Left Side	: [Improvement weight =0.33*(R/C)]	R				0.33*(R/C)		
Laying back bank below ba	nkfull el	evation (Right Sid	e): [Improvement weight =0.33*(S/C)]	S				0.33*(S/C)		
Average above ban	kfull ele [,]	vation: Net Improv	ement=Sum of above bankfull Net Improvement Facto	ors/Sum o	of above b	bankfull	linear feet of spec	ific improvement	s т	
Average below ban	kfull ele	evation: Net Impro	rement=Sum of below bankfull Net Improvement Factor	ors/Sum	of below I	bankfull	linear feet of spec	cific improvement	s U	
	A	bove Bankfull Elev	ation Credits=Average above bankfull Net Improveme	nt*Sum o	of above I	bankfull	linear feet of spec	ific improvement	s V	
	В	elow Bankfull Ele	ation Credits=Average below bankfull Net Improveme	nt*Sum	of below b	bankfull	linear feet of spec	ific improvement	s w	
			Total Instream Credits = Abov	e bankfu	ll elevatio	on credit	s + Below bankfu	Il elevation credits	s X	

Mitigation Site Assessment

Mitigation plans must be accompanied by data that supports the mitigation design.

CITY OF SALEM STREAM MITIGATION PROCESS - Page 2 MITIGATION SITE - CREDIT CALCULATION WORKSHEET

Project Name:	Waln Creek Enhancement and Battle Creek Culvert Removal Project	Date:	08/01/13
Mitigation Stream Name:	Battle Creek	Reach #:	2
Location:	Salem, Oregon	Evaluator(s):	CET

This section determines how much credit is gained from enhancing a riparian area in low or medium value condition. There is no limit to the length of the enhancement area, but credit given only within 50 feet of the stream (as measured perpendicular from the ordinary high water).

			Tabl	e C-2A: I	Riparia	an Veg	getatio	n Net	Improver	nent F	actors	withir	n 50 fe	et of Ed	dge o	of Sti	ream					
1. Pro	vide the	e length	of the r	riparian are	a that v	vill be e	nhanced	d along	each bank.													
2. Est	timate th	ne area ((in squa	re feet) of	each ex	isting p	lant cor	nmunity	y type (i.e. lo	w or me	edium) to	<mark>o be en</mark> h	anced.									
	1. Length of riparian area to be enhanced (not more than a 50 feet wide)				2. Area (in square feet) of each type of existing plant stratum				3. Area (in square feet) of each type of enhancement Plant CommunityNet Ir						Improve	ment F	actors					
L	Left Right		ght	Functional Value	Left Bank Herbaceous/ Low Shrub	8 3 5 4 5 5 8 9 5 6 8 5 5					Left Bank Tree Canopy/Tall Shrub	Right Bank Herbaceous/ Low Shrub	Right Bank Tree Canopy/Tall Shrub	Weight	Left Bank	Herbaceous/ Low Shrub	Left Bank Tree	Shrub	Right Bank Herbaceous/	Low Shrub	Right Bank Tree Canony/Tall	Canopy/ Iall Shrub
Y1	499	Y2		Low	24952				Low to High	24952	24952			0.54	0.1	162	0.30					
	Medium Medium to High Medium to 0.2						0.27															
				High					Riparian Miti	gation Net				, Z6)=sum o nent Factors		0.162	¥4	0.30	Y5		Y6	

Average Stream Flow Direction across mitigation site in degrees east of north*
135

*Measured every 100 feet along riparian enhancement Area

Table C-2B: Additional Riparian Mitigation Factors												
Stream	Ephemeral	Intermittent	Perennial	_								
Type (Z)	0.2	0.5	0.7	z	0.70							
	Ephemeral streams flow only in direct response to precipitation. Wate typically flows only during and shortly after large precipitation events. Ephemeral streams may or may not have a well-defined channel, the stream bed is always above the water table, and stormwater runoff is the primary source of water. Ephemeral streams typically lack the the biological, hydrological, and physical characteristics commonly associated with the continuous or intermittent conveyance of water.	Intermittent streams contain water for only part of the year, typically during the winte and spring when the stream bed may be below the water table and/or when snowme from surrounding uplands provides sustained flow. The channels may or may not be well-defined. The flows may vary greatly with stormwater runoff. Intermittent streams may lack the biological and hydrological characteristics commonly associated with th continuous conveyance of water.	t most of the year. Groundwater supplies the baseflow for perennial streams, but flow is also supplemented by stormwater runoff and									
Stream Status	Tertiary	Secondary	Primary	AA	0.40							
(AA)	0.1	0.4	0.8	AA	0.40							
	Tertiary Waters are streams that are documented as non-game-fish- bearing.	Secondary Waters are game-fish-bearing streams that do not meet the criteria for Primary Waters.	Primary Waters are streams designated as Essential Salmonid Habitat; Critical Habitat; streams supporting state-listed or federally listed threatened, endangered or special concern species; and streams within federal o state protected areas.									
	Left Riparian Credit (BB) =Y1*(Y3+Y4+(0.2*Z)+(0.34*AA))											
		Right Riparian Cro	edit (CC) =Y2*(Y5+Y6+(0.2*Z)+(0.34*AA))	сс								
Total Riparian Credits (DD) = BB+CC												

CREDIT CALCULATION PROJECT SUMMARY AND SCORES

Project Name:	Wal	n Creek	Enhand	ement	and Ba	ttle Cree	ek Culvert Rem	oval Pr	oject		Date:		08/01/13	•
Mitigation Stream Name:					Battle	Creek					Reach #:		2	
Location:					Salem,	Oregon	l			Eval	luator(s):		CET	
							ject Summary	,						
INSTREAM NET IMPROVEMENT FACTORS - ABOVE BANKFULL STAGE														
Laying back bank: Right Side Left Side														
		INST	REAM NE		VEMENT	FACTOR	S - AT OR BELOW	V BANKF	ULL STA	GE				
Bioengineering:	Left Side		Right Side				ng straightened ch appropriate confo			Adding habitat structures				
Removal of bank armoring:	Right Side		Left Side				Replacing undersized culvert with fish-passable culver or bridge:				g dams or adding fish ladders			
Removing man-made debris b	elow or	dinary hig	gh water:				Increasing culvert	size or a	dding cu	verts to ir		oodplain nectivity:		
Bench Creation:	Left Side		Right Side			L	aying back bank:	Right Side		Left Side				
Riparian area	Riparian area to be enhanced: Lo									erb/Low rub			ree/Tall rub	
	Med						Left Tree/Tall Shrub			erb/Low rub			ree/Tall rub	

Total Instream Credits (from Table C-1B):	x	
Total Riparian Credits (from Table C-2B):	DD	368
Total Credits: Y+EE	EE	368

MITIGATION SITE - CREDIT CALCULATION WORKSHEET

The Salem, Oregon Stream Mitigation Process is a rapid assessment methodology that quantifies impacts to streams and riparian areas and determines an appropriate level of mitigation. The process requires knowledge of stream and riparian conditions to complete four tables (2 for debit calculations and 2 for credit calculations). This worksheet is protected - no password is required to unprotect.

Project Name:	Waln Creek Enhancement and Battle Creek Culvert Removal Project	Date:	08/01/13
Mitigation Stream Name:	Battle Creek	Reach #:	3
Location:	Salem, Oregon	Evaluator(s):	CET

This section calculates the amount of credit achieved as a result of proposed instream mitigation activities.

		Table C -1A: Instre	am Credits		
		Factors			
Stream Type (A)	Ephemeral	Intermittent	Perennial	Α	0.7
(~)	0.2	0.5	0.7	r,	0.1
	Ephemeral streams flow only in direct response to precipitation. Water typically flows only during and shortly after large precipitation events. Ephemeral streams may or may not have a well-defined channel, the stream bed is always above the water table, and stormwater runoff is the primary source of water. Ephemeral streams typically lack the biological, hydrological, and physical characteristics commonly associated with the continuous or intermittent conveyance of water.	Intermittent streams contain water for only part of the year, typically during the winter and spring when the stream bed may be below the water table and/or when snowmelt from surrounding uplands provides sustained flow. The channels may or may not be well defined. The flows may vary greatly with stormwater runoff. Intermittent streams may lack the biological and hydrological characteristics commonly associated with the continuous conveyance of water.	Perennial streams contain water continuously during a year of normal rainfall, often with the stream bed located below the water table for most of the year. Groundwater supplies the baseflow for perennial streams, but flow is also supplemented by stormwater runoff and snowmelt. Perennial stream exhibit the typical biological, hydrological, and physical characteristics commonly associated with the continuous		
Stream Status	Tertiary	Secondary	Primary	в	0.4
(B)	0.1	0.4	0.8	6	0.4
	Tertiary Waters are streams that are documented as non-game-fish-bearing.	Secondary Waters are game-fish-bearing streams that do not meet the criteria for Primary Waters.	Primary Waters are streams designated as Essential Salmonid Habitat; Critical Habitat; streams supporting state-listed or federally listed threatened, endangered or special concern species; and streams within federal or state protected areas.		

				Table C-1B - Instream Net In	nprove	ement	Factor	s			
						Improv wie	vement dth	Linear Feet of Specific Improvement	Improvement Weight	Improvement Value	Net Improvement Factor
Bankfull Width	С	25									
			l	nstream Net Improvement Factors	- Abo	ve Ban	kfull B	Elevation			
Laying back bank above b	ankfull e	levation (Right Si	ide):	[Improvement weight = 0.21*(D/C)]	D				0.21*(D/C)		
Laying back bank above b	ankfull e	levation (Left Sid	e):	[Improvement weight =0.21*(E/C)]	Е				0.21*(E/C)		
			Inst	ream Net Improvement Factors - A	t or B	elow E	Bankfu	II Elevation			
Bioengineering below ban	kfull elev	vation (Left Side)	where r	ot part of any other improvement:			F		0.34		
Bioengineering below ban	kfull elev	vation (Right Side) where	not part of any other improvement:			G		0.34		
Changing straightened ch	annel to	an appropriate co	onforma	tion			Н		1.34		
Adding habitat structures	(includin	g large wood):					Г		0.15		
Removal of bank armoring	j below b	ankfull elevation	(Right S	Side) (must be stabilized with bioengineering)			J		0.34		
Removal of bank armoring	j below b	ankfull elevation	(Left Si	de) (must be stabilized with bioengineering)			к		0.34		
Replacing undersized culv	vert with	fish-passable cul	vert or	bridge:			L	121	0.80	0.80	96.80
Installing fish ladders (If ")	/es", ente	er "Y",if "no" leav	ve blank)		0	м		0.80		
Removing man-made strue	ctures th	at impound strea	ms:				N		1.34		
Increasing culvert size or a blank):	adding c	ulverts to increas	e flood	olain connectivity(If "yes", enter "Y", if "no" leav	e		ο		0.05		
Bench creation at bankfull	elevatio	n (Left Side):		[Improvement weight =0.76*(P/C)]	Р				0.76*(P/C)		
Bench creation at bankful	elevatio	n (Right Side):		[Improvement weight =0.76*(Q/C)]	Q				0.76*(Q/C)		
Laying back bank below b	ankfull e	levation (Left Sid	e):	[Improvement weight =0.33*(R/C)]	R	5.	00	121	0.33*(R/C)	0.07	7.99
Laying back bank below b	ankfull e	levation (Right Si	ide):	[Improvement weight =0.33*(S/C)]	S	5.	00	121	0.33*(S/C)	0.07	7.99
Average above bar	nkfull ele	vation: Net Impro	ovement	=Sum of above bankfull Net Improvement Facto	rs/Sum o	of above b	oankfull	inear feet of spec	ific improvement	s T	
Average below ba	nkfull ele	evation: Net Impro	ovemen	t=Sum of below bankfull Net Improvement Facto	rs/Sum	of below I	bankfull	linear feet of spec	ific improvement	s U	0.31
	Α	bove Bankfull Ele	evation	Credits=Average above bankfull Net Improvement	nt*Sum o	of above b	bankfull	inear feet of spec	ific improvement	s v	
	E	Below Bankfull El	evation	Credits=Average below bankfull Net Improveme	nt*Sum	of below I	bankfull	linear feet of spec	ific improvement	s w	308.79
				Total Instream Credits = Above	e bankfu	II elevatio	on credit	s + Below bankful	I elevation credits	x	308.79

Mitigation Site Assessment

Mitigation plans must be accompanied by data that supports the mitigation design.

CITY OF SALEM STREAM MITIGATION PROCESS - Page 2 MITIGATION SITE - CREDIT CALCULATION WORKSHEET

Project Name:	Waln Creek Enhancement and Battle Creek Culvert Removal Project	Date:	08/01/13
Mitigation Stream Name:	Battle Creek	Reach #:	3
Location:	Salem, Oregon	Evaluator(s):	CET

This section determines how much credit is gained from enhancing a riparian area in low or medium value condition. There is no limit to the length of the enhancement area, but credit given only within 50 feet of the stream (as measured perpendicular from the ordinary high water).

			Tabl	e C-2A: I	Riparia	an Veg	getatio	n Net	Improver	nent F	actors	withir	n 50 fe	et of Ed	dge of S	tream	1				
1. Pro	ovide the	e length	of the r	riparian are	ea that v	vill be e	nhanced	d along	each bank.												
2. Est	timate th	ne area	(in squa	are feet) of	each ex	isting p	lant cor	nmunity	/ type (i.e. lo	w or me	edium) to	<mark>o be en</mark> h	anced.								
	1. Length of riparian area to be enhanced (not more than a 50 feet wide)				2. Area (in square feet) of each type of existing plant stratum				3. A	trea (in sq e	uare feet) nhanceme		pe of	Plant	Commu	nityNet	Improve	ement Factors			
L	Left Right		ght	Functional Value	ft Bank baceous/ w Shrub Bank Tre Shrub Jat Bank baceous/ w Shrub Bank Tre Bank Tre Shrub			Right Bank Tree Canopy/Tall Shrub	Improvement Action	Left Bank Herbaceous/ Low Shrub	Left Bank Tree Canopy/Tall Shrub	Right Bank Herbaceous/ Low Shrub	Right Bank Tree Canopy/Tall Shrub	Weight	Left Bank Herbaceous/ Low Shrub	Left Bank Tree	Canopy/Tall Shrub	Right Bank Herbaceute/	Right Bank Herbaceous/ Low Shrub		Shrub
¥1		Y2		Low					Low to High					0.54							
Medium Medium to High							0.27														
	High								Riparian Miti	gation Net				, Z6)=sum o ient Factors		¥4		Y5		Y6	

Average Stream Flow Direction across mitigation site in degrees east of north*
121

*Measured every 100 feet along riparian enhancement Area

Table C-2B: Additional Riparian Mitigation Factors											
Stream Type	Ephemeral	Intermittent	Perennial	z	0.70						
(Z)	0.2	0.5	0.7	2	0.70						
	Ephemeral streams flow only in direct response to precipitation. Wate typically flows only during and shortly after large precipitation events. Ephemeral streams may or may not have a well-defined channel, the stream bed is always above the water table, and stormwater runoff is the primary source of water. Ephemeral streams typically lack the the biological, hydrological, and physical characteristics commonly associated with the continuous or intermittent conveyance of water.	Intermittent streams contain water for only part of the year, typically during the winte and spring when the stream bed may be below the water table and/or when snowme from surrounding uplands provides sustained flow. The channels may or may not be well-defined. The flows may vary greatly with stormwater runoff. Intermittent streams may lack the biological and hydrological characteristics commonly associated with th continuous conveyance of water.	t most of the year. Groundwater supplies the baseflow for perennial streams, but flow is also supplemented by stormwater runoff and								
Stream	Tertiary	Secondary	Primary		- <i>.</i> .						
Status (AA)	0.1	0.4	0.8	AA	0.40						
	Tertiary Waters are streams that are documented as non-game-fish- bearing.	Secondary Waters are game-fish-bearing streams that do not meet the criteria for Primary Waters.	Primary Waters are streams designated as Essential Salmonid Habitat; Critical Habitat; streams supporting state-listed or federally listed threatened, endangered or special concern species; and streams within federal o state protected areas.								
		Left Riparian Cr	edit (BB) =Y1*(Y3+Y4+(0.2*Z)+(0.34*AA))	BB							
		Right Riparian Cru	edit (CC) =Y2*(Y5+Y6+(0.2*Z)+(0.34*AA))	сс							
			Total Riparian Credits (DD) = BB+CC	DD							

CREDIT CALCULATION PROJECT SUMMARY AND SCORES

Project Name:	Wal	n Creek	Enhan	cement	and Ba	ttle Cre	ek Culvert Rem	oval Pr	oject		Date:	0	8/01/13	
Mitigation Stream Name:					Battle	Creek					Reach #:		3	
Location:					Salem,	Oregon	I			Eval	uator(s):		CET	
				Ta	ble C-	3A: Pro	ject Summary	/						
		I	NSTREAM	I NET IM	PROVEM	ENT FAC	TORS - ABOVE B	ANKFULL	STAGE					
Laying back bank:		Left Side												
		INST	REAM NE	ET IMPRO	VEMEN	FACTOR	RS - AT OR BELOW	W BANKF	ULL STA	GE				
Bioengineering:	Left Side		Right Side			Changing straightened channel to an appropriate conformation:				Adding h	abitat st	ructures		
Removal of bank armoring:	Right Side		Left Side			Replacing undersized culvert with fish-passable culver or bridge:				Removin	Removing dams or adding fish ladders			
Removing man-made debris b	elow or	dinary hig	gh water:				Increasing culvert	size or a	dding cu	lverts to ir		oodplain nectivity:		
Bench Creation:		Right Side			I	aying back bank:	Right Side	121	Left Side	121				
Riparian area	Riparian area to be enhanced:						Left Tree/Tall Shrub			lerb/Low hrub		Right Tre Shru		
							Left Tree/Tall Shrub			lerb/Low hrub		Right Tre Shru		

Total Instream Credits (from Table C-1B):	x	309
Total Riparian Credits (from Table C-2B):	DD	
Total Credits: Y+EE	EE	309

MITIGATION SITE - CREDIT CALCULATION WORKSHEET

The Salem, Oregon Stream Mitigation Process is a rapid assessment methodology that quantifies impacts to streams and riparian areas and determines an appropriate level of mitigation. The process requires knowledge of stream and riparian conditions to complete four tables (2 for debit calculations and 2 for credit calculations). This worksheet is protected - no password is required to unprotect.

Project Name:	Waln Creek Enhancement and Battle Creek Culvert Removal Project	Date:	08/01/13
Mitigation Stream Name:	Waln Creek	Reach #:	1
Location:	Salem, Oregon	Evaluator(s):	CET

This section calculates the amount of credit achieved as a result of proposed instream mitigation activities.

		Factors			
Stream Type (A)	Ephemeral	Α	0.7		
(1)	0.2	0.5	0.7		•
	Ephemeral streams flow only in direct response to precipitation. Water typically flows only during and shortly after large precipitation events. Ephemeral streams may or may not have a well-defined channel, the stream bed is always above the water table, and stormwater runoff is the primary source of water. Ephemeral streams typically lack the biological, hydrological, and physical characteristics commonly associated with the continuous or intermittent conveyance of water.	Intermittent streams contain water for only part of the year, typically during the winter and spring when the stream bed may be below the water table and/or when snowmelt from surrounding uplands provides sustained flow. The channels may or may not be well defined. The flows may vary greatly with stormwater runoff. Intermittent streams may lack the biological and hydrological characteristics commonly associated with the continuous conveyance of water.	Perennial streams contain water continuously during a year of normal rainfall, often with the stream bed located below the water table for most of the year. Groundwater supplies the baseflow for perennial streams, but flow is also supplemented by stormwater runoff and snowmelt. Perennial stream exhibit the typical biological, hydrological, and physical characteristics commonly associated with the continuous		
Stream Status	Tertiary	Secondary	Primary	в	0.4
(B)	0.1	0.4	0.8	5	0.4
	Terliary Waters are streams that are documented as non-game-fish-bearing.	Secondary Waters are game-fish-bearing streams that do not meet the criteria for Primary Waters.	Primary Waters are streams designated as Essential Salmonid Habitat; Critical Habitat; streams supporting state-listed or federally listed threatened, endangered or special concern species; and streams within federal or state protected areas.		

Table C-1B - Instrea	am Net Imp	orove	ement l	Factor	'S			
			Improv wic		Linear Feet of Specific Improvement	Improvement Weight	Improvement Value	Net Improvement Factor
Bankfull Width C 30								
Instream Net Improvement	Factors -	Abo	ve Ban	kfull E	Elevation			
Laying back bank above bankfull elevation (Right Side): [Improvement weight = 0.21*(D/C)]]	D				0.21*(D/C)		
Laying back bank above bankfull elevation (Left Side): [Improvement weight =0.21*(E/C)]		Е				0.21*(E/C)		
Instream Net Improvement Fa	actors - At	or B	elow B	ankfu	II Elevation			
Bioengineering below bankfull elevation (Left Side) where not part of any other improvement:				F		0.34		
Bioengineering below bankfull elevation (Right Side) where not part of any other improvement:				G		0.34		
Changing straightened channel to an appropriate conformation				н	805	1.34	1.34	1078.70
Adding habitat structures (including large wood):				1	124	0.15	0.15	18.60
Removal of bank armoring below bankfull elevation (Right Side) (must be stabilized with bioeng	jineering)			J		0.34		
Removal of bank armoring below bankfull elevation (Left Side) (must be stabilized with bioengin	neering)			к		0.34		
Replacing undersized culvert with fish-passable culvert or bridge:				L		0.80		
Installing fish ladders(If "yes", enter "Y",if "no" leave blank)			0	м		0.80		
Removing man-made structures that impound streams:				Ν		1.34		
Increasing culvert size or adding culverts to increase floodplain connectivity (If "yes", enter "Y", blank):	, if "no" leave			ο		0.05		
Bench creation at bankfull elevation (Left Side): [Improvement weight =0.76*(P/C)]		Р	56.	00	805	0.76*(P/C)	1.42	1142.03
Bench creation at bankfull elevation (Right Side): [Improvement weight =0.76*(Q/C)]		Q	145	.00	805	0.76*(Q/C)	3.67	2957.03
Laying back bank below bankfull elevation (Left Side): [Improvement weight =0.33*(R/C)]		R				0.33*(R/C)		
Laying back bank below bankfull elevation (Right Side): [Improvement weight =0.33*(S/C)]		s				0.33*(S/C)		
Average above bankfull elevation: Net Improvement=Sum of above bankfull Net Improve	ement Factors	/Sum o	of above b	ankfull I	inear feet of spec	ific improvements	sт	
Average below bankfull elevation: Net Improvement=Sum of below bankfull Net Improvement Factors/Sum of below bankfull linear feet of specific improvements						s U	2.05	
Above Bankfull Elevation Credits=Average above bankfull Net Improvement*Sum of above bankfull linear feet of specific improvements							s v	
Below Bankfull Elevation Credits=Average below bankfull Net	Improvement	*Sum c	of below b	ankfull	linear feet of spec	ific improvement	s W	6567.42
Total Instream Cre	dits = Above b	bankfu	II elevatio	n credit:	s + Below bankfu	Il elevation credits	x	6567.42

Mitigation Site Assessment

Mitigation plans must be accompanied by data that supports the mitigation design.

CITY OF SALEM STREAM MITIGATION PROCESS - Page 2 MITIGATION SITE - CREDIT CALCULATION WORKSHEET

Project Name:	Waln Creek Enhancement and Battle Creek Culvert Removal Project	Date:	08/01/13
Mitigation Stream Name:	Waln Creek	Reach #:	1
Location:	Salem, Oregon	Evaluator(s):	CET

This section determines how much credit is gained from enhancing a riparian area in low or medium value condition. There is no limit to the length of the enhancement area, but credit given only within 50 feet of the stream (as measured perpendicular from the ordinary high water).

	Table C-2A: Riparian Vegetation Net Improvement Factors within 50 feet of Edge of Stream																					
1. Pro	ovide the	e length	of the r	riparian are	a that v	vill be e	nhanced	d along	each bank.													
2. Est	timate th	ne area (in squa	re feet) of	each ex	isting p	lant cor	nmunity	/ type (i.e. lo	w or me	edium) to	<mark>o be en</mark> h	anced.									
1. Length of riparian area to be enhanced (not more than a 50 feet wide) 2. Area (in square feet) of each type of existing plant stratum 3. Area (in square feet) of each type of enhancement Plant CommunityNet Improvement				Improv	provement Factors																	
L	Left	Rig	jht	Functional Value	Left Bank Herbaceous/ Low Shrub	Left Bank Tree Canopy/Tall Shrub	Right Bank Herbaceous/ Low Shrub	Right Bank Tree Canopy/Tall Shrub	Improvement Action	Left Bank Herbaceous/ Low Shrub	Left Bank Tree Canopy/Tall Shrub	Right Bank Herbaceous/ Low Shrub	Right Bank Tree Canopy/Tall Shrub	Weight	Left Bank Herbacous/ Low Shrub Low Shrub Left Bank Tree Ganopy/Tall Shrub Right Bank Right Bank		Low Shrub	Low Shrub Right Bank Tree Canopy/Tall Shrub				
¥1	805	Y2	805	Low	40250		40250		Low to High	40250	40250	40250	40250	0.54	0.'	162	0.	30	0.	16	0.25	
			Medium Medium to High 0.27				0.27															
	High Image: Constraint of the second se								0.162	¥4	0.30	Y5	0.16	Y6	0.25							

Average Stream Flow Direction across mitigation site in degrees east of north* 166

*Measured every 100 feet along riparian enhancement Area

	Table C-2B	Additional Riparian Mitigation Factors			an Mitigation a Scores				
Stream Type	Ephemeral 0.2	Intermittent 0.5	Perennial 0.7	z	0.70				
(Z)	U.2 Ephemeral streams flow only in direct response to precipitation. Wate typically flows only during and shortly after large precipitation events. Ephemeral streams may or may not have a well-defined channel, the stream bed is always above the water table, and stormwater runnf is the primary source of water. Ephemeral streams typically lack the the biological, hydrological, and physical characteristics commonly associated with the continuous or intermittent conveyance of water.	Intermittent streams contain water for only part of the year, typically during the winter	Perennial streams contain water continuously during a year of normal rainfall, often with the stream bed located below the water table for most of the year. Groundwater supplies the baselfow for perennial streams, but flow is also supplemented by stormwater runoft and						
Stream Status	Tertiary	Secondary	Primary	AA	0.40				
(AA)	0.1	0.4	0.8						
	Tertiary Waters are streams that are documented as non-game-fish- bearing.	Secondary Waters are game-fish-bearing streams that do not meet the criteria for Primary Waters.	Primary Waters are streams designated as Essential Salmonid Habitat; Critical Habitat; streams supporting state-listed or federally listed threatened, endangered or special concern species; and streams within federal o state protected areas.						
		Left Riparian Cr	edit (BB) =Y1*(Y3+Y4+(0.2*Z)+(0.34*AA))	BB	594.09				
Right Riparian Credit (CC) =Y2*(Y5+Y6+(0.2*Z)+(0.34*AA)									
	Total Riparian Credits (DD) = BB+CC								

CREDIT CALCULATION PROJECT SUMMARY AND SCORES

Project Name:	Wal	n Creek	Enhand	ancement and Battle Creek Culvert Removal Project							Date:	(08/01/13	;	
Mitigation Stream Name:					Waln	Creek					Reach #:		1		
Location:					Salem,	Oregon	I	Evaluator(s): CET							
				Та	ble C-	3A: Pro	ject Summary	/							
		11	NSTREAM	I NET IMI	PROVEM	ENT FAC	TORS - ABOVE B	ANKFULL	STAGE						
Laying back bank:	Left Side														
		INST	REAM NE	T IMPRC	VEMENT	FACTOR	RS - AT OR BELOW	V BANKF	ULL STA	GE					
Bioengineering:	Left Side		Right Side				ng straightened cl appropriate confo		805	Adding h	nabitat sti	ructures	12	24	
Removal of bank armoring:	Right Side		Left Side				ng undersized cul -passable culver o			Removin		or adding n ladders			
Removing man-made debris b	elow or	dinary hig	gh water:				Increasing culvert	size or a	dding cu	lverts to in		oodplain nectivity:			
Bench Creation:	Left Side		Right Side	805		I	_aying back bank:	Right Side		Left Side					
Riparian area to be enhanced: Low				Left Herb/Low Shrubs		40250	Left Tree/Tall Shrub			lerb/Low hrub	40250	Right Tree/Tal Shrub			
	Medi				rb/Low ubs		Left Tree/Tall Shrub			lerb/Low hrub		Right T Shi			

Total Instream Credits (from Table C-1B):	x	6567
Total Riparian Credits (from Table C-2B):	DD	1151
Total Credits: Y+EE	EE	7718

MITIGATION SITE - CREDIT CALCULATION WORKSHEET

The Salem, Oregon Stream Mitigation Process is a rapid assessment methodology that quantifies impacts to streams and riparian areas and determines an appropriate level of mitigation. The process requires knowledge of stream and riparian conditions to complete four tables (2 for debit calculations and 2 for credit calculations). This worksheet is protected - no password is required to unprotect.

Project Name:	Waln Creek Enhancement and Battle Creek Culvert Removal Project	Date:	08/01/13
Mitigation Stream Name:	Waln Creek	Reach #:	2
Location:	Salem, Oregon	Evaluator(s):	CET

This section calculates the amount of credit achieved as a result of proposed instream mitigation activities.

	Table C -1A: Instream Credits										
		Factors									
Stream Type (A)	Ephemeral	Α	0.7								
(~)	0.2	0.5	0.7		0.1						
	Ephemeral streams flow only in direct response to precipitation. Water typically flows only during and shortly after large precipitation events. Ephemeral streams may or may not have a well-defined channel, the stream bed is always above the water table, and stormwater runoff is the primary source of water. Ephemeral streams typically lack the biological, hydrological, and physical characteristics commonly associated with the continuous or intermittent conveyance of water.	Intermittent streams contain water for only part of the year, typically during the winter and spring when the stream bed may be below the water table and/or when snowmelt from surrounding uplands provides sustained flow. The channels may or may not be well defined. The flows may vary greatly with stormwater runoff. Intermittent streams may lack the biological and hydrological characteristics commonly associated with the continuous conveyance of water.	Perennial streams contain water continuously during a year of normal rainfall, often with the stream bed located below the water table for most of the year. Groundwater supplies the baseflow for perennial streams, but flow is also supplemented by stormwater runoff and snowmelt. Perennial stream exhibit the typical biological, hydrological, and physical characteristics commonly associated with the continuous								
Stream Status	Tertiary	Secondary	Primary	в	0.4						
(B)	0.1	0.4	0.8	6	0.4						
	Tertiary Waters are streams that are documented as non-game-fish-bearing.	Secondary Waters are game-fish-bearing streams that do not meet the criteria for Primary Waters.	Primary Waters are streams designated as Essential Salmonid Habitat; Critical Habitat; streams supporting state-listed or federally listed threatened, endangered or special concern species; and streams within federal or state protected areas.								

Table C-1B	- Instream Net Im	prove	ement l	Factor	'S				
		-	Improv wic		Linear Feet of Specific Improvement	Improvement Weight	Improvement Value	Net Improvement Factor	
Bankfull Width C 30									
Instream Net Impr	Instream Net Improvement Factors - Above Bankfull Elevation								
Laying back bank above bankfull elevation (Right Side): [Improvement weight	= 0.21*(D/C)]	D				0.21*(D/C)			
Laying back bank above bankfull elevation (Left Side): [Improvement weight	=0.21*(E/C)]	Е				0.21*(E/C)			
Instream Net Improv	ement Factors - A	t or B	elow B	Bankfu	II Elevation				
Bioengineering below bankfull elevation (Left Side) where not part of any other imp	rovement:			F		0.34			
Bioengineering below bankfull elevation (Right Side) where not part of any other im	provement:			G		0.34			
Changing straightened channel to an appropriate conformation				н		1.34			
Adding habitat structures (including large wood):				I.		0.15			
Removal of bank armoring below bankfull elevation (Right Side) (must be stabilized	with bioengineering)			J		0.34			
Removal of bank armoring below bankfull elevation (Left Side) (must be stabilized v	vith bioengineering)			к		0.34			
Replacing undersized culvert with fish-passable culvert or bridge:				L		0.80			
Installing fish ladders (If "yes", enter "Y", if "no" leave blank)			0	м		0.80			
Removing man-made structures that impound streams:				Ν		1.34			
Increasing culvert size or adding culverts to increase floodplain connectivity(If "yes blank):	s", enter "Y", if "no" leave			ο		0.05			
Bench creation at bankfull elevation (Left Side): [Improvement weight	=0.76*(P/C)]	Р	65.	.00	345	0.76*(P/C)	1.65	568.10	
Bench creation at bankfull elevation (Right Side): [Improvement weight	=0.76*(Q/C)]	Q	43.	.00	345	0.76*(Q/C)	1.09	375.82	
Laying back bank below bankfull elevation (Left Side): [Improvement weight	=0.33*(R/C)]	R	10.	.00	345	0.33*(R/C)	0.11	37.95	
Laying back bank below bankfull elevation (Right Side): [Improvement weight	=0.33*(S/C)]	S	10.	.00	345	0.33*(S/C)	0.11	37.95	
Average above bankfull elevation: Net Improvement=Sum of above bankfull	Net Improvement Factors	s/Sum o	f above b	ankfull I	inear feet of spec	ific improvements	s т		
Average below bankfull elevation: Net Improvement=Sum of below bankfull Net Improvement Factors/Sum of below bankfull linear feet of specific improvements							s U	0.74	
Above Bankfull Elevation Credits=Average above bankfull Net Improvement*Sum of above bankfull linear feet of specific improvements									
Below Bankfull Elevation Credits=Average below	bankfull Net Improvemen	t*Sum c	of below b	ankfull	linear feet of spec	ific improvements	s w	1765.02	
Total I	nstream Credits = Above	bankfu	I elevatio	n credit	s + Below bankfu	I elevation credits	x	1765.02	

Mitigation Site Assessment

Mitigation plans must be accompanied by data that supports the mitigation design.

CITY OF SALEM STREAM MITIGATION PROCESS - Page 2 MITIGATION SITE - CREDIT CALCULATION WORKSHEET

Project Name:	Waln Creek Enhancement and Battle Creek Culvert Removal Project	Date:	08/01/13
Mitigation Stream Name:	Waln Creek	Reach #:	2
Location:	Salem, Oregon	Evaluator(s):	CET

This section determines how much credit is gained from enhancing a riparian area in low or medium value condition. There is no limit to the length of the enhancement area, but credit given only within 50 feet of the stream (as measured perpendicular from the ordinary high water).

	Table C-2A: Riparian Vegetation Net Improvement Factors within 50 feet of Edge of Stream																											
1. Pro	1. Provide the length of the riparian area that will be enhanced along each bank.																											
2. Estimate the area (in square feet) of each existing plant community type (i.e. low or medium) to be enhanced.																												
1. Length of riparian area to be enhanced (not more than a 50 feet wide)				2. Area (in square feet) of each type of existing plant stratum					3. Area (in square feet) of each type of enhancement					Plant CommunityNet Improvement Factors														
Left Right		jht	Functional Value	Left Bank Hebaceous/ Low Shrub Left Bank Tree Canopy/Tall Shrub Shrub Low Shrub Low Shrub Low Shrub Low Shrub Shrub Shrub		Improvement Action	Left Bank Herbaceous/ Low Shrub	Left Bank Tree Canopy/Tall Shrub	Right Bank Herbaceous/ Low Shrub	Right Bank Tree Canopy/Tall Shrub	Weight	Left Bank	Herbaceous/ Low Shrub	Left Bank Tree	Shrub	Right Bank	Low Shrub	Right Bank Tree	Canopy/Tall Shrub									
¥1	345	Y2	345	Low	17250		14835		Low to High	17250	17250	14835	14835	0.54	0.	162	0.30		0.30		0.30		0.30		0.1	14	0.	.14
				Medium					Medium to High					0.27														
									Riparian Miti	gation Net				, Z6)=sum o nent Factors		0.162	¥4	0.30	Y5	0.14	Y6	0.14						

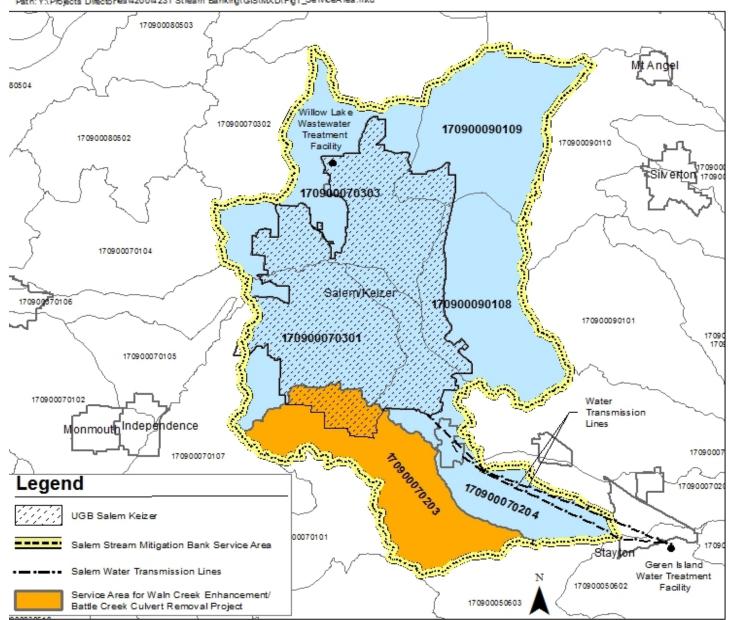
Average Stream Flow Direction across mitigation site in degrees east of north*
0
*Measured every 100 feet along riparian enhancement Area

Table C-2B: Additional Riparian Mitigation Factors										
Stream	Ephemeral	Intermittent	Perennial	-	0.70					
Type (Z)	0.2	0.5	0.7	z	0.70					
	Ephemeral streams flow only in direct response to precipitation. Wate typically flows only during and shortly after large precipitation events. Ephemeral streams may or may not have a well-defined channel, the stream bed is always above the water table, and stormwater runoff is the primary source of water. Ephemeral streams typically lack the the biological, hydrological, and physical characteristics commonly associated with the continuous or intermittent conveyance of water.	Intermittent streams contain water for only part of the year, typically during the winte	t most of the year. Groundwater supplies the baseflow for perennial streams, but flow is also supplemented by stormwater runoff and	1						
Stream Status	Tertiary	Secondary	Primary	AA	0.40					
(AA)	0.1	0.4	0.8	AA	0.40					
	Tertiary Waters are streams that are documented as non-game-fish- bearing.	Secondary Waters are game-fish-bearing streams that do not meet the criteria for Primary Waters.	Primary Waters are streams designated as Essential Salmonid Habitat; Critical Habitat; streams supporting state-listed or federally listed threatened, endangered or special concern species; and streams within federal or state protected areas.							
Left Riparian Credit (BB) =Y1*(Y3+Y4+(0.2*Z)+(0.34*AA										
Right Riparian Credit (CC) =Y2*(Y5+Y6+(0.2*Z)+(0.34*AA)										
Total Riparian Credits (DD) = BB+CC										

CREDIT CALCULATION PROJECT SUMMARY AND SCORES

Project Name: Waln Creek Enha				cement	and Ba	ttle Cre	ek Culvert Rem		Date:	ate: 08/01/1				
Mitigation Stream Name:			Waln Creek								Reach #:			
Location:				Salem, Oregon								or(s): CET		
Table C-3A: Project Summary														
		11	NSTREAM		PROVEM	ENT FAC	TORS - ABOVE B	ANKFULL	STAGE					
Laying back bank: Right Side Left Side														
INSTREAM NET IMPROVEMENT FACTORS - AT OR BELOW BANKFULL STAGE														
Bioengineering: Left Right Side Side						Changing straightened channel to an appropriate conformation:				Adding habitat structures				
Removal of bank armoring			Left Side			Replacing undersized culvert with fish-passable culver or bridge:				Removing dams or adding fish ladders				
Removing man-made debris b	elow or	dinary hig	gh water:				Increasing culvert	lverts to increase floodplain connectivity:						
Bench Creation:	Left Side		Right Side	345		L	_aying back bank:	Right Side	345	Left Side	345			
Riparian area		erb/Low ubs	17250	Left Tree/Tall Shrub			erb/Low rub	14835	Right Tr Shr					
	Medium	Left Herb/Low Shrubs			Left Tree/Tall Shrub		Right Herb/Low Shrub			Right Tree/Tall Shrub				

Total Instream Credits (from Table C-1B):	x	1765
Total Riparian Credits (from Table C-2B):	DD	446
Total Credits: Y+EE	EE	2211


Attachment H

Service Area Map

ATTACHMENT H

Path: Y1 Projects Directories/4200/4231 Stream Banking\GIS\MXD\Fig1_ServiceArea.mxd

HUC Source: BLM (Oregon Geospatial Data)

6th Field HUCs within Service Area

170900070203 - McKinney Creek 170900070204 - Lower Mill Creek 170900070301 - Croisan Creek (includes Pringle Creek) 170900070302 - Glenn Creek (includes Claggett Creek) 170900090109 - Lower Little Pudding River 170900090108 - Upper Little Pudding River

SERVICE AREA

Waln Creek Enhancement and Battle Creek Culvert Removal Project